Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
$5^{75}=(5^5)^{15}=3125^{15}$
$7^{60}=(7^4)^{15}=2401^{15}$
Mà $3125> 2401$ nên $5^{75}> 7^{60}$
b.
$3^{21}=3.3^{20}=3.9^{10}$
$2^{31}=2.2^{30}=2.8^{10}< 3. 9^{10}$
$\Rightarrow 3^{21}> 2^{31}$
Ta có A = 1 + 2 + 22 + 23 + ... + 2100
=> 2A = 2 + 22 + 23 + 24 + ... + 2101
Khi đó 2A - A = (2 + 22 + 23 + 24 + ... + 2101) - (1 + 2 + 22 + 23 + ... + 2100)
=> A = 2101 - 1
Vì 2101 - 1 < 2101
=> A < B
Vậy A < B
A = 1 + 2 + 22 + 23 + ... + 2100
=> 2A = 2( 1 + 2 + 22 + 23 + ... + 2100 )
= 2 + 22 + 23 + ... + 2101
=> A = 2A - A
= 2 + 22 + 23 + ... + 2101 - ( 1 + 2 + 22 + 23 + ... + 2100 )
= 2 + 22 + 23 + ... + 2101 - 1 - 2 - 22 - 23 - ... - 2100
= 2101 - 1 < 2101
=> A < B
a)Tìm x:
4x+6=3x-4
4x-3x=-4-6
x=-10
Vậy x=-10
c)Tính nhanh:
2315.(-2314+1)-2314.(1-2315)
=2315.(-2314)+2315-2314-2314.2315
=2315.(-2314+1-2314)-2314
=2315.(-4627)-2314
=-10711505-2314
=-10713819
Ta có :
\(A=\frac{10^{11}-1}{10^{12}-1}\) \(B=\frac{10^{10}+1}{10^{11}+1}\)
\(10A=\frac{10^{12}-10}{10^{12}-1}\) \(10B=\frac{10^{11}+10}{10^{12}+1}\)
\(10A=\frac{10^{12}-1-9}{10^{12}-1}\) \(10B=\frac{10^{11}+1+9}{10^{11}+1}\)
\(10A=1-\frac{9}{10^{12}-1}\) \(10B=1+\frac{9}{10^{11}+1}\)
Ta thấy \(1-\frac{9}{10^{12}-1}< 1\) mà \(1+\frac{9}{10^{11}+1}>1\)
\(\Rightarrow A< B\)
Vậy \(A< B\)
Ủng hộ mk nha !!! ^_^
Câu 1:
\(3^{2x-1}=27\)
\(\Leftrightarrow3^{2x-1}=3^3\)
\(\Leftrightarrow2x-1=3\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
Câu 2:
Ta có: \(1000^9=999.1000^8+1000^8\)
Vì: \(999.1000^8>999.999^8=999^9\)và \(1000^8>999^8\)
\(\Rightarrow1000^9>999^9+999^8\)
Hay: \(B>A\)
\(C1:\)
\(3^{2x-1}=27\)
\(3^{2x-1}=3^3\)
\(\Rightarrow2x-1=3\)
\(2x=4\)
\(x=2\)