Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=-1 và y=2 vào 2x-y+3, ta được:
\(2x-y+3=-2-2+3=-1< 0\)
=>(-1;2) không là nghiệm của bất phương trình 2x-y+3>0
b:
-x+2+2(y-2)<2(2-x)(1)
=>-x+2+2y-4<4-2x
=>-x+2y-2-4+2x<0
=>x+2y-6<0
Thay x=-1 và y=2 vào x+2y-6, ta được:
\(x+2y-6=-1+4-6=-3< 0\)
=>(-1;2) là nghiệm của bất phương trình (1)
c: Thay x=-1 và y=2 vào x-y-15, ta được:
\(x-y-15=-1-2-15=-18< 0\)
=>(-1;2) là nghiệm của bất phương trình x-y-15<0
d: 3(x-1)+4(y-2)<5x-3(2)
=>3x-3+4y-8<5x-3
=>3x+4y-11-5x+3<0
=>-2x+4y-8<0
=>x-2y+4>0
Khi x=-1 và y=2 thì \(x-2y+4=-1-4+4=-1< 0\)
=>(-1;2) không là nghiệm của bất phương trình (2)
Thay tọa độ điểm (0;0) vào ta được: \(\left\{ \begin{array}{l}0 - 0 < - 3\left( {ktm} \right)\\2.0 \ge - 4\left( {tm} \right)\end{array} \right.\)
=> Loại A
Thay tọa độ điểm (-2;1) vào ta được: \(\left\{ \begin{array}{l} - 2 - 1 < - 3\left( {ktm} \right)\\2.1 \ge - 4\left( {tm} \right)\end{array} \right.\)
=> Loại B.
Thay tọa độ điểm (3;-1) vào ta được: \(\left\{ \begin{array}{l}3 - \left( { - 1} \right) < - 3\left( {ktm} \right)\\2.\left( { - 1} \right) \ge - 4\left( {tm} \right)\end{array} \right.\)
Loại C
Thay tọa độ điểm (-3;1) vào ta được: \(\left\{ \begin{array}{l} - 3 - 1 < - 3\left( {tm} \right)\\2.1 \ge - 4\left( {tm} \right)\end{array} \right.\)
Chọn D.
a) Thay \(x = 0,y = - 1\)vào bất phương trình \(2x - 3y < 3\) ta được:
\(2.0 - 3.\left( { - 1} \right) < 3 \Leftrightarrow 3 < 3\) (Vô lý)
Vậy \(\left( {0; - 1} \right)\) không là nghiệm.
b) Thay \(x = 2,y = 1\)vào bất phương trình \(2x - 3y < 3\) ta được:
\(2.2 - 3.1 < 3 \Leftrightarrow 1 < 3\) (Luôn đúng)
Vậy \(\left( {2;1} \right)\) là nghiệm.
c) Thay \(x = 3,y = 1\)vào bất phương trình \(2x - 3y < 3\) ta được:
\(2.3 - 3.1 < 3 \Leftrightarrow 3 < 3\) (Vô lý)
Vậy \(\left( {3;1} \right)\) không là nghiệm.
Đáp án A: \(x + y > 3\) là bất phương trình bậc nhất hai ẩn x và y có a=1, b=1, c=3
Đáp án B: \({x^2} + {y^2} \le 4\) không là bất phương trình bậc nhất hai ẩn vì có \({x^2},{y^2}\)
Đáp án C: \(\left( {x - y} \right)\left( {3x + y} \right) \ge 1 \Leftrightarrow 3{x^2} - 2xy - {y^2} \ge 1\) không là bất phương trình bậc nhất hai ẩn vì có \({x^2},{y^2}\)
Đáp án D: \({y^3} - 2 \le 0\) không là bất phương trình bậc nhất hai ẩn vì có \({y^3}\).
Chọn A
Thay cặp số ( 1; 3) vào vế trái của bất phương trình ta được :
5.1 – 2( 3-1) >0
Do đó, cặp số (1 ;3) không là nghiệm của bất phương trình đã cho.
(1;1) không thuộc miền nghiệm vì 1+1=2>2 (Vô lý) => Loại A
(2;0) không thuộc miền nghiệm vì 2+0=2>2 (Vô lý) => Loại B
(3;2) thuộc miền nghiệm vì: 3+2 =5 > 2 (đúng) và \(3 - 2 = 1 \ge 1\) (đúng)
(3;-2) không thuộc miền nghiệm vì 3+ (-2)=1>2 (Vô lý) => Loại D
Chọn C.
Câu 1: ĐK: $x\neq -1$
Nếu $x\geq 0$ thì:
BPT \(\Leftrightarrow -2\leq \frac{2-3x}{x+1}\leq 2\Rightarrow \left\{\begin{matrix} x\leq 4\\ x\geq 0\end{matrix}\right.\Rightarrow x\in\left\{0;1;2;3;4\right\}\)
Nếu $x< 0$ thì:
BPT \(\Leftrightarrow -2\leq \frac{2+3x}{x+1}\leq 2\)
Trường hợp $-1< x< 0$ thì $\Leftrightarrow -2(x+1)\leq 2+3x\leq 2(x+1)$
$\Leftrightarrow x\geq \frac{-4}{5}$ và $x\leq 0$. Kết hợp với ĐK $-1< x< 0$ nên không có giá trị $x$ nguyên thỏa mãn
Trường hợp $x< -1$ thì $\Leftrightarrow -2(x+1)\geq 2+3x\geq 2(x+1)$
$\Leftrightarrow x\leq \frac{-4}{5}$ và $x\geq 0$ (vô lý)
Do đó có 5 giá trị $x$ nguyên thỏa mãn.
Đáp án B
Câu 2:
VTCP của $\Delta_1$: $\overrightarrow{u_1}(m+1, -1)$
VTPT của $\Delta_2$: $\overrightarrow{n_2}(m,-6)$
Để 2 đường thẳng song song với nhau thì: $\overrightarrow{u_1}\perp \overrightarrow{n_2}$
$\Leftrightarrow m(m+1)+(-1)(-6)=0$
$\Leftrightarrow m^2+m+6=0$
$\Leftrightarrow (m+\frac{1}{2})^2=-\frac{23}{4}< 0$ (vô lý- loại)
Vậy không có giá trị m thỏa mãn
Đáp án B.
a) Vì \(4.9 - 7.1 - 28 = 1 \ge 0\)nên \((9;1)\) là nghiệm của bất phương trình \(4x - 7y - 28 \ge 0.\)
b) Vì \(4.2 - 7.6 - 28 = - 62 < 0\)nên \((2;6)\) không là nghiệm của bất phương trình \(4x - 7y - 28 \ge 0.\)
c) Vì \(4.0 - 7.( - 4) - 28 = 0 \ge 0\)nên \((0; - 4)\) là nghiệm của bất phương trình \(4x - 7y - 28 \ge 0.\)
Thay các cặp số vào bất phương trình đã cho ta thấy chỉ có cặp số (4;4) thỏa mãn bất phương trình. Đáp án là D.