Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1, B = 2, C = 3
x = 8, y = 5, z = 3
Ax + By = Cz = 1 x 8 + 2 x 5 = 3 x 6
A, B, C có bội chung nhỏ nhất là 6.
đây là bài toán ko ai giải đc tuy nhiên mk bít sẽ có 1 trong thế giới này giải đc trong hiện tại hoặc tương lai cố nhé
1) Để A là phân số thì 4 phải chia hết cho n-1
Suy ra n-1 thuộc ước của 4
Vậy n phải có điều kiên là ước của 4 cộng 1
2) Ước của 4 là : -1;-2;-4;1;2;4
Để A là số nguyên thì n-1 phải là số nguyên và bằng 1;2;4
n = 2;3;5
giả sử x và y đều không chia hết cho 3
\(\hept{\begin{cases}x^4\equiv1\left(mod3\right)\\y^4\equiv1\left(mod3\right)\end{cases}\Rightarrow x^4+y^4\equiv2\left(mod3\right)\Rightarrow\frac{x^4+y^4}{15}\notin N}\)
=> x và y đều phải chi hết cho 3
tương tự sử dụng với mod 5, ( lũy thừa bậc 4 của 1 số luôn đồng dư với 0 hoạc 1 theo mod5 )
=> x và y đề phải chia hết cho 5
=> x,y đều chia hết cho 15
mà số nguyên dương nhỏ nhất chia hết cho 15 là 15 => x=y=15
thay vào và tìm min nhé
\(\left(\frac{x^2+3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)
\(=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)
\(=\left(\frac{x}{x^2+9}+\frac{3}{x^2+9}\right):\left(\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\right)=\frac{x+3}{x^2+9}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)
\(=\frac{\left(x+3\right)\left(x-3\right)\left(x^2+9\right)}{\left(x^2+9\right)\left(x^2-6x+9\right)}=\frac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x-3\right)}=\frac{x+3}{x-3}\)
b) \(Voix>0\Rightarrow P\ne\varnothing\)(mk ko chac)
c) \(P\inℤ\Leftrightarrow x+3⋮x-3\Leftrightarrow x-3\in\left\{-1;-2;-3;-6;1;2;3;6\right\}\)
sau do tinh
cau nay la toan lp 8 nha
Mk k cho 3 bạn đầu tiên nha
Ai thấy thì nhớ k cho mk nữa nè
khó quá
k nha mik k lại rồi