K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\left|2x+5\right|+\left|x+3\right|=10x-20\)

Trường hợp 1: x<-3

Pt sẽ là -2x-5-x-3=10x-20

=>10x-20=-3x-8

=>13x=12

hay x=12/13(loại)

Trường hợp 2: -3<=x<5/2

Pt sẽ là x+3-2x-5=10x-20

=>10x-20=-x-2

=>11x=18

hay x=18/11(nhận)

Trường hợp 3: x>=-5/2

Pt sẽ là 2x+5+x+3=10x-20

=>10x-20=3x+8

=>7x=28

hay x=4(nhận)

25 tháng 8 2023

a) \(\sqrt[]{x^2-4x+4}=x+3\)

\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)

\(\Leftrightarrow\left|x-2\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)

\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)

b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)

\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)

\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)

\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)

Giải pt (1)

\(\Delta=9+32=41>0\)

Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)

Giải pt (2)

\(\Delta=9+48=57>0\)

Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)

Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)

31 tháng 8 2015

\(\sqrt{\left(2x\right)^2+2.2x.5+5^2}+\sqrt{x^2+2.x.3+3^2}=10x-20\)

\(\Leftrightarrow\sqrt{\left(2x+5\right)^2}+\sqrt{\left(x+3\right)^2}=10x-20\)

\(\Leftrightarrow2x+5+x+3=10x-20\)

\(\Leftrightarrow7x=28\Leftrightarrow x=4\)

10 tháng 9 2020
  • giải phương trình sau:\(\sqrt{x^2+10x+26}+\sqrt{2x^2+20x+57}=1+\sqrt{7}\)bạn nào giải được mình bái phục bạn ấy à mình làm youtube nhé youtube của mình là: Long VH đăng ký nhé thanks
25 tháng 3 2017

a)\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}\)

=\(\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}\ge6\)(1)

mặt khác 5-2x-x2=6-(x+1)2\(\le6\)(2)

từ (1) và (2)=>dấu = xảy ra khi VP =6 =VTtức x=-1

b)\(\sqrt{3x^2+6x+12}\)+\(\sqrt{5x^4+10x^2+9}\)

=\(\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2+1\right)^2+4}>5\)(x2+1>0)(1')

mặt khác VP=5-2(x+1)2\(\le\)5(2')

từ (1') và (2')=> pt vô nghiệm

21 tháng 9 2019

vì sao lại có : căn(3(x+1)^2+4) +căn(5(x+1)^2+16) >=6 vậy ạ?

 

9 tháng 7 2019

mn giúp tớ mới

3 tháng 10 2018

heloo

hello

hello