Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì N xuất hiện ở những hàng cao nhất và nhiều lần nhất nên N phải bằng 9 để kết quả lớn nhất. Tiếp đó C xuất hiện ở hàng cao nhất còn lại giống M và T nhưng C còn ở hai hàng khác nữa nên C bằng 8. Nếu M là 7 thì T là 6 và ngược lại, kết quả của phép toán không thay đổi. Với lập luận như trên thì H bằng 5, U bằng 4 và G là 3. Từ đó A bằng 2, Y bằng 1 và O là 0.
Vậy ta có 2 đáp số :
8548 + 6493 + 7521 + 80 + 9529 + 9321 - 20 - 11 = 41461
và 8548 + 7493 + 6521 + 80 + 9529 + 9321 - 20 - 11 = 41461
Vì N xuất hiện ở những hàng cao nhất và nhiều lần nhất nên N phải bằng 9 để kết quả lớn nhất. Tiếp đó C xuất hiện ở hàng cao nhất còn lại giống M và T nhưng C còn ở hai hàng khác nữa nên C bằng 8. Nếu M là 7 thì T là 6 và ngược lại, kết quả của phép toán không thay đổi. Với lập luận như trên ta => H = 5,
U= 4, G = 3. Từ đó =>
A = 2, Y = 1 và O = 0.
Vậy ta có :
8548 + 6493 + 7521 + 80 + 9529 + 9321 ‐ 20 ‐ 11 = 41461
và 8548 + 7493 + 6521 + 80 + 9529 + 9321 ‐ 20 ‐ 11 = 41461
Vì N xuất hiện ở những hàng cao nhất và nhiều lần nhất nên N phải bằng 9 để kết quả lớn nhất. Tiếp đó C xuất hiện ở hàng cao nhất còn lại giống M và T nhưng C còn ở hai hàng khác nữa nên C bằng 8. Nếu M là 7 thì T là 6 và ngược lại, kết quả của phép toán không thay đổi. Với lập luận như trên ta => H = 5,
U= 4, G = 3. Từ đó =>
A = 2, Y = 1 và O = 0.
Vậy ta có :
8548 + 6493 + 7521 + 80 + 9529 + 9321 ‐ 20 ‐ 11 = 41461
và 8548 + 7493 + 6521 + 80 + 9529 + 9321 ‐ 20 ‐ 11 = 41461
Ten + ten = twenty
nineteen + one = twenty
eighteen + two = twenty
five + fifteen = twenty
.....
tk mk nha
cảm ơn mọi người nhiều lắm ạ ! hihi
a, \(\overline{ab,b}\) - \(\overline{c,c}\) = \(\overline{0,a}\)
(\(\overline{ab,b}\) - \(\overline{c,c}\)) \(\times\)10 = \(\overline{0,a}\)
\(\overline{abb}\) - \(cc\) = \(a\)
\(a\times\)100 + \(b\)\(\times\)11 - \(c\times\)11 = \(a\)
\(a\times\)100 + \(b\times\)11 - \(c\times\)11 - \(a\) = 0
\(a\times\)99 + \(b\) \(\times\)11 - \(c\times\) 11 = 0
11\(\times\)(\(a\times\)9 + \(b\) - \(c\)) = 0
\(a\times\) 9 + \(b\) - \(c\) = 0
\(a\times\) 9 = \(c-b\) ⇒ \(c-b\)⋮9 ⇒ \(c\) = \(b\) ; \(c\) - \(b\) = 9;
th: \(c\) = \(b\) ⇒ \(a\times\)9 = 0 ⇒ \(a\) = 0 (loại)
th: \(c-b=9\) ⇒ \(c=9+b\) ⇒ \(b\) = 0; \(c\) = 9
\(a\times\) 9 = 9 - 0 = 9 ⇒ \(a\) = 1
Vậy thay \(a=1;b=0;c=9\) vào biểu thức: \(\overline{ab,b}-\overline{c,c}=\overline{o,a}\) ta được:
10,0 -9,9 = 0,1
b, \(\overline{b,a}\) - \(\overline{a,b}\) = 2,7
(\(\overline{b,a}\) - \(\overline{a,b}\))\(\times\)10 = 2,7 \(\times\) 10
\(\overline{ba}\) - \(\overline{ab}\) = 27
\(b\times10+a-a\times10-b\) = 27
(\(b\times10\) - \(b\)) - (\(a\) \(\times\) 10 - \(a\)) = 27
(\(b\times10-b\times1\)) - (\(a\times\)10 - \(a\)\(\times\)1) = 27
\(b\)\(\times\)(10 -1) - \(a\) \(\times\)( 10 - 1) =27
\(b\times\) 9 - \(a\times9\) = 27
9\(\times\) (\(b-a\)) = 27
\(b-a\) = 27 : 9
\(b-a\) = 3 ⇒ \(b\) = 3 + \(a\) ≤ 9 ⇒ \(a\) ≤ 9 - 3 = 6
Lập bảng ta có:
\(a\) | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
\(b\) = \(a+3\) | 3 | 4 | 5 | 6 | 7 | 8 |
9 |
Thay các giá trị của \(a;b\) lần lượt vào biểu thức \(\overline{b,a}-\overline{a,b}\) = 2,7 ta có:
3,0 - 0,3 = 2,7
4,1 - 1,4 = 2,7
5,2 - 2,5 = 2.7
6,3 - 3,6 = 2,7
8,5 - 5,8 = 2,7
9,6 - 6,9 = 2,7