K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2020

℃=℉ - 32/1.8000

℉ =℃ * 1.8000+ 32.00

5 tháng 4 2020

1.8000 là 18000 nha đừng nhầm thành 1x18000

26 tháng 7 2019

Chọn A

Đồ thị của hàm số liên tục trên các đoạn , lại có là một nguyên hàm của .

Do đó diện tích của hình phẳng giới hạn bởi các đường:

là: 

.

Tương tự: diện tích của hình phẳng

giới hạn bởi các đường: là: 

.

Mặt khác, dựa vào hình vẽ ta có: .

Từ (1), (2) và (3) ta chọn đáp án A. 

 

( có thể so sánh với dựa vào dấu của trên đoạn và so sánh với dựa vào dấu của trên đoạn )

26 tháng 4 2019

Đáp án : D

 

14 tháng 3 2021

a) f' (x)=3x2-6x

f'' (x)=6x-6;f'' (x)=0 < ⇒ x=1 ⇒ f (1) = -1

Vậy I(1; -1)

b) Công thức chuyển hệ trục tọa độ trong phép tịnh tiến theo vectơ OI:

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

  

Phương trình của (C) đối với hệ trục IXY là:

y - 1 = (X+1)3-3(X+1)2+1 hay Y=X3-3X

Vì hàm số Y=X3-3X là hàm số lẻ nên đồ thị của nó nhận gốc tọa độ I làm tâm đối xứng.

c) * Tiếp tuyến với (C) tại I(1; -1) đối với hệ tọa độ Oxy là:

y = f' (1)(x-1)+f(1) với f’(1) = -3; f(1) = -1

Nên Phương trình tiếp tuyến: y= -3(x-1)+(-1) hay y = -3x + 2

Xét hiệu (x3-3x2+1)-(-3x+2)=(x-1)3

Với x ∈(-∞;1) ⇒ (x-1)3<0 ⇔ x3 – 3x2 + 1 < -3x +2 nên đường cong (C): y=x3-33+1 nằm phía dưới tiếp tuyến y = -3x + 2

Với x ∈(1; +∞) ⇒ (x-1)3>0 ⇔ x3 – 3x2 + 1 > -3x + 2 nên đường cong (C): nằm phía trên tiếp tuyến tại I.

12 tháng 5 2019

Chọn A

17 tháng 3 2018

+Ta có đạo hàm f’ (x)= 3ax2+ 2bx+c .

+ Dựa vào đồ thị hàm số y= f’ ( x) ta thấy đồ thị hàm số  đi qua các điểm (0 ; 0) ; (1 ; -1) ; (2 ; 0)  nên  a= 1/3 ; b= -1 ; c= 0.

Do vậy hàm số cần tìm có dạng y= 1/3 x3-x2+ d  .

 Điểm tiếp xúc với trục hoành là cực trị của đồ thị hàm số và tại đó ta có x= 0 hoặc x= 2. + Vì đồ thị hàm số y= f(x)  tiếp xúc với trục hoành tại điểm có hoành độ dương nên đồ thị hàm số tiếp xúc trục hoành tại điểm  x= 2 nghĩa là:

 f( 2) = 0 hay  8/3-4+ d= 0  nên d= 4/3

Chọn D.

4 tháng 9 2017

26 tháng 6 2019