K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2023

a, \(243\) là hợp số . Vì \(243⋮3,9\)

b, \(89\) là số nguyên tố . Vì ko chia hết cho số nào.

c, \(391\) là số nguyên tố. Vì ko chia hết cho số nào .

31 tháng 8 2023

Nguyễn Minh Dương cô tick xanh cho em nhưng cô sửa lại cho em: 

89 là số nguyên tố vì 89 chia hết cho 1 và chính nó em nhá.

391 là hợp số vì nó chia hết cho: 1; 17; 23; 391

 

26 tháng 7 2023

Bài 1 :

a) \(123456789+729=\text{123457518}⋮2\)

⇒ Số trên là hợp số

b)\(5.7.8.9.11-132=\text{27588}⋮2\)

⇒ Số trên là hợp số

Bài 2 :

a) \(P+2\&P+4\) ;à số nguyên tố

\(\Rightarrow\dfrac{P+2}{P+4}=\pm1\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{P+2}{P+4}=1\\\dfrac{P+2}{P+4}=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}P+2=P+4\\P+2=-P-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}0.P=2\left(x\in\varnothing\right)\\2.P=-6\end{matrix}\right.\)

\(\Rightarrow P=-3\)

Câu b tương tự

 

26 tháng 7 2023

a,123456789+729=123457518(hợp số)

b,5x7x8x9x11-132=27588(hợp số)

Bài 2,

a,Nếu P=2=>p+2=4 và p+4=6 (loại)

Nếu P=3=>p+2=5 và p+4=7(t/m)

P>3 => P có dạng 3k+1 hoặc 3k+2(k ϵn,k>0)

Nếu p=3k+1=>p+2=3k+3 ⋮3( loại)

Nếu p=3k+2=>p+4=3k+6⋮3(loại)

Vậy p=3 thỏa mãn đề bài

b,Nếu p=2=>p+10=12 và p+14=16(loại)

Nếu p=3=>p+10=13 và p+14=17(t/m)

Nếu p >3=>p có dạng 3k+1 hoặc 3k+2

Nếu p=3k+1=>p+14=3k+15⋮3(loại)

Nếu p=3k+2=>p+10=3k+12⋮3(loại)

Vậy p=3 thỏa mãn đề bài.

26 tháng 8 2021

a) Nguyên tố

b) Hợp số 

c) Hợp số

d) Nguyên tố

26 tháng 8 2021
a) số nguyên b) hợp số c) hợp số d) số nguyên
26 tháng 10 2015

a)N tố vì 1997=1997.1

b) H số vì 111121111=41.73.137.271

c) h số vì 3111141111= 3.13^2.19.109.2963

25 tháng 8 2019

9 Tìm số nguyên tố p sao cho : 

a) Nếu p = 2 

=> p + 16 = 2 + 16 = 18 (hợp số)

=> p = 2 (loại) 

Nếu p = 3 

=> p + 16 = 3 + 16 = 19 (số ngyên tố)

=> p + 38 = 3 + 38 = 41 (số nguyên tố)

=> p = 3 (chọn)

Nếu p > 3

=> \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}\left(k\inℕ^∗\right)}\)

Nếu p = 3k + 1

=> p + 38 = 3k + 1 + 38 = 3k + 39 = 3(k + 13) \(⋮\)3

=> p = 3k + 1 (loại)

Nếu p = 3k + 2

=> p + 16 = 3k + 2 + 16 = 3k + 18 = 3(k + 6) \(⋮\)3

=> p = 3k + 2 (loại)

Vậy p = 3

b) Nếu p = 2 

=> p + 28 = 2 + 28 = 30 (hợp số)

=> p = 2 (loại) 

Nếu p = 3 

=> p + 28 = 3 + 28 = 31 (số ngyên tố)

=> p + 44 = 3 + 44 = 47 (số nguyên tố)

=> p = 3 (chọn)

Nếu p > 3

=> \(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}\left(k\inℕ^∗\right)}\)

Nếu p = 3k + 1

=> p + 44 =  3k + 1 + 44 = 3k + 45 = 3(k + 15) \(⋮\)3

=> p = 3k + 1 (loại)

Nếu p = 3k + 2

=> p + 28 = 3k + 2 + 28 = 3k + 30 = 3(k + 10) \(⋮\)3

=> p = 3k + 2 (loại)

Vậy p = 3

 c) Nếu p = 2 

=> p + 26 = 2 + 26 = 28 (hợp số)

=> p = 2 (loại)

Nếu p = 3 

=> p + 42 = 3 + 42 = 45 (hợp số)

=> p = 3 (loại)

Nếu p = 5

=> p + 26 = 5 + 26 = 31 (số nguyên tố)

=> p + 42 = 5 + 42 = 47 (số nguyên tố)

=> p + 48 = 5 + 48 = 53 (số nguyên tố)

=> p + 74 = 5 + 74 = 79 (số nguyên tố)

=> p = 5 (chọn)

Nếu p > 5

=> p = 5k + 1 hoặc p = 5k + 2 hoặc p = 5k + 3 hoặc p = 5k + 4 (\(k\inℕ^∗\))

Nếu p = 5k + 1

=> p + 74 = 5k + 1 + 74 = 5k + 75 = 5(k + 15) \(⋮\)

=> p + 74 là hợp số 

=> p = 5k + 1 (loại)

Nếu p = 5k + 2

=> p + 48 = 5k + 2 + 48 = 5k + 50 = 5(k + 10) \(⋮\)5

=> p + 48 là hợp số 

=> p = 5k + 2 (loại)

Nếu p = 5k + 3

=> p + 42 = 5k + 3 + 42 = 5k + 45 = 5(k + 9) \(⋮\)5

=> p + 42 là hợp số 

=> p = 5k + 3 (loại)

Nếu p = 5k + 4

=> p + 26 = 5k + 4 + 26 = 5k + 30 = 5(k + 6) \(⋮\)5

=> p + 26 là hợp số 

=> p = 5k + 4 (loại)

Vậy p = 5

10) a) Gọi 3 số tự nhiên liên tiếp là : a ; a + 1 ; a + 2

Ta có : a + a + 1 + a + 2 = 3a + 6 

                                       = 3(a + 2) \(⋮\)3

=> Tổng của 3 số tự nhiên liên tiếp là hợp số 

b) Gọi 3 số tự nhiên lẻ liên tiếp là : a ; a + 2 ; a + 4

=> Ta có : a + a + 2 + a + 4  = 3a + 6

                                             = 3(a + 2) \(⋮\)3

=> Tổng của 3 số tự nhiên lẻ liên tiếp là hợp số 

31 tháng 8 2023

Số 391 là hợp số vì \(391⋮17,23,391\)

#pero_

31 tháng 8 2023

số 391 là số nguyên tố bởi vì nó chỉ có 2 ước là 1 và chính nó

Bài 1: 

a) Các số nguyên tố là 37;67 vì mỗi số này chỉ có hai ước là 1 và chính nó

b) Các số là hợp số là 57;77 và 87 vì mỗi số này có nhiều hơn 2 ước

Câu 2: 

a) \(17\cdot19+23\cdot29\) là hợp số

b) \(5\cdot8-3\cdot13\) không là số nguyên tố cũng không là hợp số

c) \(143\cdot144\cdot145-145\cdot144\cdot143\) không là số nguyên tố cũng không là hợp số