Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3:
b: x1^2+x2^2=12
=>(x1+x2)^2-2x1x2=12
=>(2m+2)^2-4m=12
=>4m^2+4m+4=12
=>m^2+m+1=3
=>(m+2)(m-1)=0
=>m=1;m=-2
2:
b: =>|x1|-|x2|=m+3-|-1|=m+2
=>x1^2+x2^2-2|x1x2|=m+2
=>(x1+x2)^2-2x1x2-2|x1x2|=m+2
=>(2m)^2-2(-1)-2|-1|=m+2
=>4m^2-m-2=0
=>m=(1+căn 33)/8; m=(1-căn 33)/8
có
<=>352=2\(\pi\).7.h<=>352=14\(\pi\).h<=>h=352/(14.\(\pi\))
<=>h\(\approx\)8cm( nếu lấy\(\pi\) \(\approx\)3,14)
a: Xét ΔSBM và ΔSNB có
\(\widehat{SBM}=\widehat{SNB}\)
\(\widehat{BSM}\) chung
Do đó: ΔSBM\(\sim\)ΔSNB
Suy ra: SB/SN=SM/SB
hay \(SB^2=SM\cdot SN\)
b: Xét (O) có
SA là tiếp tuyến
SB là tiếp tuyến
Do đó: SA=SB
mà OA=OB
nên SO là đường trung trực của AB
=>SO⊥AB
Xét ΔOBS vuông tại B có BH là đường cao
nên \(SH\cdot SO=SB^2=SM\cdot SN\)
\(y\left(x-1\right)=x^2+2\)
\(\Leftrightarrow x^2-xy+y+2=0\)
\(\Leftrightarrow x\left(x-1\right)-y\left(x-1\right)+\left(x-1\right)+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-y+1\right)=-3\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1=-1\\x-y+1=3\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=3\\x-y+1=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=1\\x-y+1=-3\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=-3\\x-y+1=1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=-2\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(0;-2\right),\left(4;6\right),\left(2;6\right),\left(-2;-2\right)\right\}\)
Ta có \(y\left(x-1\right)=x^2+2\)
\(\Leftrightarrow y\left(x-1\right)-x^2=2\)
\(\Leftrightarrow y\left(x-1\right)-x^2+1=3\)
\(\Leftrightarrow y\left(x-1\right)-\left(x^2-1\right)=3\)
\(\Leftrightarrow y\left(x-1\right)-\left(x-1\right)\left(x+1\right)=3\)
\(\Leftrightarrow\left(x-1\right)\left(y-x-1\right)=3\)
Vì x,y nguyên nên ta có bảng
x-1 | 3 | 1 | -1 | -3 |
y-x-1 | 1 | 3 | -3 | -1 |
x | 4 | 2 | 0 | -2 |
y | 6 | 8 | 2 | 4 |
Vậy\(\left(x,y\right)=\left\{\left(4,6\right),\left(2,8\right),\left(0,2\right),\left(-2,4\right)\right\}\)thỏa mãn
\(P=\dfrac{18}{x}+\dfrac{9}{y}+\dfrac{x}{6}-\dfrac{5y}{12}+2019\)
\(P=\left(\dfrac{x}{2}+\dfrac{18}{x}\right)+\left(\dfrac{y}{4}+\dfrac{9}{y}\right)-\dfrac{1}{3}\left(x+2y\right)+2019\)
\(P\ge2\sqrt{\dfrac{18x}{2x}}+2\sqrt{\dfrac{9y}{4y}}-\dfrac{1}{3}.18+2019=2022\)
Dấu "=" xảy ra khi \(x=y=6\)
Câu a mình làm xuống dưới nha =)))
b. Ta có, 2xgóc BCE + 2x góc BCF = 180° ( gt theo tia phân giác )
=> 2.(góc BCE + góc BCF ) = 180°
<=> góc ECF = 180°/ 2 = 90°
Chứng minh tương tự, có góc EBF = 90°
( từ hai điều trên ) suy ra góc ECF + góc EBF = 180°
=> tức giác BECF nội tiếp đường tròn có tâm là trung điểm của EF.
c, tức giác BECF nội tiếp => góc EBI = góc CIF
góc EIB = góc CIF ( đối đỉnh )
==> tam giác IEB đồng dạng với tam giác ICF
=> BI / IE = IF / IC
<=> BI.IC= IF.IE
a, trong tam giác ABC
có góc xBC = góc BAC + góc ACB ( góc ngoài tam giác )
=> 1/2 góc xBC = 1/2 góc BAC + 1/2 góc ACB
<=> FBI = góc EAC + góc ECA
mà EAC + ECA + AEC = 180°
==> góc FBI + góc AEC = 180° *
mà góc FBI = góc FEC ( tức giác BEFC nội tiếp ) **
Từ (*) và (**) suy ra FEC + AEC = 180°
=> E, F, A thẳng hàng.
A, xin lỗi, cái chỗ câu c nè
tức giác BECF nội tiếp suy ra góc EBI = góc CFI mới đúng nhé
xin lỗi, mình viết nhầm chỗ đó :(((
Đề bài đâu z :v
Hỏi z thôi chứ e chưa học lớp 9