K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: \(\Leftrightarrow n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{0;-2;1;-3;3;-5\right\}\)

c: \(\Leftrightarrow n+2\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{-1;-3;3;-7\right\}\)

d: \(\Leftrightarrow n+2\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{-1;-3;0;-4;2;-6\right\}\)

a: \(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{2;0;6;-4\right\}\)

 

a: =100x54-100x(-6)

=100x60

=6000

b: =99(123-56+66-123)=990

c: =547x(1+103-4)=54700

d: =-76x10=-760

b: \(\Leftrightarrow n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{0;-2;1;-3;3;-5\right\}\)

c: \(\Leftrightarrow n+2\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{-1;-3;3;-7\right\}\)

d: \(\Leftrightarrow n+2\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{-1;-3;0;-4;2;-6\right\}\)

a: \(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{2;0;6;-4\right\}\)

 

Bài 4: 

a: \(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{2;0;6;-4\right\}\)

2 tháng 1 2022

senpai đang viết j vậy

c: \(\Leftrightarrow n+2\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{-1;-3;3;-7\right\}\)

d: \(\Leftrightarrow n+2\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{-1;-3;0;-4;2;-6\right\}\)

a: \(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{2;0;6;-4\right\}\)

 

b: \(\Leftrightarrow n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{0;-2;1;-3;3;-5\right\}\)

c: \(\Leftrightarrow n+2\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{-1;-3;3;-7\right\}\)

d: \(\Leftrightarrow n+2\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{-1;-3;0;-4;2;-6\right\}\)

a: \(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{2;0;6;-4\right\}\)

 

29 tháng 1 2022

Bài 9:
\(a,\left(2n+1\right)⋮\left(n-1\right)\\ \Rightarrow\left[\left(2n-2\right)+3\right]⋮\left(n-1\right)\\ \Rightarrow\left[2\left(n-1\right)+3\right]⋮\left(n-1\right)\)

Mà \(2\left(n-1\right)⋮\left(n-1\right)\Rightarrow3⋮\left(n-1\right)\Rightarrow n-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

Ta có bảng:

n-1-3-113
n-2(loại)0(tm)2(tm)4(tm)

Vậy \(n\in\left\{0;2;4\right\}\)

b, c, d bạn làm tương tự nhé

Bài 10:

a: Gọi a=UCLN(n+1;2n+3)

\(\Leftrightarrow2n+3-2\left(n+1\right)⋮a\)

\(\Leftrightarrow1⋮a\)

=>a=1

Vậy: n+1/2n+3 là phân số tối giản

b: Gọi a=UCLN(3n+2;5n+3)

\(\Leftrightarrow5\left(3n+2\right)-3\left(5n+3\right)⋮a\)

\(\Leftrightarrow1⋮a\)

=>a=1

Vậy: 3n+2/5n+3 là phân số tối giản

4 tháng 1 2022

c: ⇔n+2∈{1;−1;5;−5}⇔n+2∈{1;−1;5;−5}

hay n∈{−1;−3;3;−7}n∈{−1;−3;3;−7}

d: ⇔n+2∈{1;−1;2;−2;4;−4}⇔n+2∈{1;−1;2;−2;4;−4}

hay n∈{−1;−3;0;−4;2;−6}n∈{−1;−3;0;−4;2;−6}

a: ⇔n−1∈{1;−1;5;−5}⇔n−1∈{1;−1;5;−5}

hay n∈{2;0;6;−4}

b: \(\Leftrightarrow n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{0;-2;1;-3;3;-5\right\}\)

c: \(\Leftrightarrow n+2\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{-1;-3;3;-7\right\}\)

d: \(\Leftrightarrow n+2\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{-1;-3;0;-4;2;-6\right\}\)

a: \(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{2;0;6;-4\right\}\)

 

24 tháng 8 2021

Bài 4:

a) Ta có: \(\widehat{yOz}+\widehat{xOy}=180^0\)(2 góc kề bù)

\(\Rightarrow\widehat{yOz}=180^0-\widehat{xOy}=180^0-50^0=130^0\)

b) Ta có: \(\widehat{zOt}=\widehat{yOt}=\dfrac{1}{2}\widehat{yOz}=\dfrac{1}{2}.130^0=65^0\)(do Ot là tia phân giác \(\widehat{yOz}\))

c) Ta có: \(\widehat{xOt}=\widehat{yOt}+\widehat{xOy}=65^0+50^0=115^0\)

Bài 5: 

 a) Ta có: \(\widehat{xOz}+\widehat{xOy}=180^0\)(2 góc kề bù)

\(\Rightarrow\widehat{xOz}=180^0-\widehat{xOy}=180^0-110^0=70^0\)

b) Ta có: \(\widehat{zOt}=\dfrac{1}{2}\widehat{xOz}=\dfrac{1}{2}.70^0=35^0\)( Ot là tia phân giác \(\widehat{xOz}\))

c) Ta có: \(\widehat{xOt}=\widehat{zOt}=35^0\)( Ot là tia phân giác \(\widehat{xOz}\))

Bài 4: 

a: Ta có: \(\widehat{xOy}+\widehat{yOz}=180^0\)

\(\Leftrightarrow\widehat{yOz}=180^0-50^0\)

\(\Leftrightarrow\widehat{yOz}=130^0\)

b: \(\widehat{zOt}=\dfrac{\widehat{yOz}}{2}=65^0\)