Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =100x54-100x(-6)
=100x60
=6000
b: =99(123-56+66-123)=990
c: =547x(1+103-4)=54700
d: =-76x10=-760
b: \(\Leftrightarrow n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{0;-2;1;-3;3;-5\right\}\)
c: \(\Leftrightarrow n+2\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{-1;-3;3;-7\right\}\)
d: \(\Leftrightarrow n+2\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{-1;-3;0;-4;2;-6\right\}\)
a: \(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)
Bài 4:
a: \(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)
c: \(\Leftrightarrow n+2\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{-1;-3;3;-7\right\}\)
d: \(\Leftrightarrow n+2\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{-1;-3;0;-4;2;-6\right\}\)
a: \(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)
b: \(\Leftrightarrow n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{0;-2;1;-3;3;-5\right\}\)
c: \(\Leftrightarrow n+2\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{-1;-3;3;-7\right\}\)
d: \(\Leftrightarrow n+2\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{-1;-3;0;-4;2;-6\right\}\)
a: \(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)
Bài 9:
\(a,\left(2n+1\right)⋮\left(n-1\right)\\
\Rightarrow\left[\left(2n-2\right)+3\right]⋮\left(n-1\right)\\
\Rightarrow\left[2\left(n-1\right)+3\right]⋮\left(n-1\right)\)
Mà \(2\left(n-1\right)⋮\left(n-1\right)\Rightarrow3⋮\left(n-1\right)\Rightarrow n-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Ta có bảng:
n-1 | -3 | -1 | 1 | 3 |
n | -2(loại) | 0(tm) | 2(tm) | 4(tm) |
Vậy \(n\in\left\{0;2;4\right\}\)
b, c, d bạn làm tương tự nhé
Bài 10:
a: Gọi a=UCLN(n+1;2n+3)
\(\Leftrightarrow2n+3-2\left(n+1\right)⋮a\)
\(\Leftrightarrow1⋮a\)
=>a=1
Vậy: n+1/2n+3 là phân số tối giản
b: Gọi a=UCLN(3n+2;5n+3)
\(\Leftrightarrow5\left(3n+2\right)-3\left(5n+3\right)⋮a\)
\(\Leftrightarrow1⋮a\)
=>a=1
Vậy: 3n+2/5n+3 là phân số tối giản
c: ⇔n+2∈{1;−1;5;−5}⇔n+2∈{1;−1;5;−5}
hay n∈{−1;−3;3;−7}n∈{−1;−3;3;−7}
d: ⇔n+2∈{1;−1;2;−2;4;−4}⇔n+2∈{1;−1;2;−2;4;−4}
hay n∈{−1;−3;0;−4;2;−6}n∈{−1;−3;0;−4;2;−6}
a: ⇔n−1∈{1;−1;5;−5}⇔n−1∈{1;−1;5;−5}
hay n∈{2;0;6;−4}
b: \(\Leftrightarrow n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{0;-2;1;-3;3;-5\right\}\)
c: \(\Leftrightarrow n+2\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{-1;-3;3;-7\right\}\)
d: \(\Leftrightarrow n+2\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{-1;-3;0;-4;2;-6\right\}\)
a: \(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)
Bài 4:
a) Ta có: \(\widehat{yOz}+\widehat{xOy}=180^0\)(2 góc kề bù)
\(\Rightarrow\widehat{yOz}=180^0-\widehat{xOy}=180^0-50^0=130^0\)
b) Ta có: \(\widehat{zOt}=\widehat{yOt}=\dfrac{1}{2}\widehat{yOz}=\dfrac{1}{2}.130^0=65^0\)(do Ot là tia phân giác \(\widehat{yOz}\))
c) Ta có: \(\widehat{xOt}=\widehat{yOt}+\widehat{xOy}=65^0+50^0=115^0\)
Bài 5:
a) Ta có: \(\widehat{xOz}+\widehat{xOy}=180^0\)(2 góc kề bù)
\(\Rightarrow\widehat{xOz}=180^0-\widehat{xOy}=180^0-110^0=70^0\)
b) Ta có: \(\widehat{zOt}=\dfrac{1}{2}\widehat{xOz}=\dfrac{1}{2}.70^0=35^0\)( Ot là tia phân giác \(\widehat{xOz}\))
c) Ta có: \(\widehat{xOt}=\widehat{zOt}=35^0\)( Ot là tia phân giác \(\widehat{xOz}\))
Bài 4:
a: Ta có: \(\widehat{xOy}+\widehat{yOz}=180^0\)
\(\Leftrightarrow\widehat{yOz}=180^0-50^0\)
\(\Leftrightarrow\widehat{yOz}=130^0\)
b: \(\widehat{zOt}=\dfrac{\widehat{yOz}}{2}=65^0\)
b: \(\Leftrightarrow n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{0;-2;1;-3;3;-5\right\}\)
c: \(\Leftrightarrow n+2\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{-1;-3;3;-7\right\}\)
d: \(\Leftrightarrow n+2\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{-1;-3;0;-4;2;-6\right\}\)
a: \(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)