K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2020

\(\frac{a}{b}=\frac{c}{d};a.d=c.b\)

\(a.d,b.c\),có nghĩa là quy đồng.Vì nếu quy đồng thì \(\frac{a}{b}=\frac{c}{d}=\frac{a.d}{b.d}=\frac{c.b}{d.b}\).

Ta thấy mẫu số quy đồng thì đương nhiên bằng nhau,mà tử số thì \(a.d=c.b\).

Vì \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d};a.d=c.b\)là đúng.

5 tháng 10 2020

Giải:

Ta có: a/d = b/c

⇒⇒ a/d : c/d = b/c : c/d

⇒⇒ a : c = d : d

⇒a/c=b/d⇒a/c=b/d

Vậy a/c=b/d

31 tháng 10 2018

Ta có \(\frac{a}{d}=\frac{c}{b}\Rightarrow\frac{b}{d}=\frac{c}{a}=\frac{c+b}{a+d}\)

Vậy C là phương án đúng

13 tháng 7 2016

\(\frac{a}{b}< \frac{c}{d}\)(với b>0 ; d >0 )

\(\Leftrightarrow\frac{ad}{bd}< \frac{cb}{bd}\)

\(\Leftrightarrow\frac{ad}{bd}.bd< \frac{cb}{bd}.bd\)

\(\Leftrightarrow ad< cb\left(đpcm\right)\)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) Vì BD là tia phân giác của góc ABC nên \(\widehat {{B_1}} = \widehat {{B_2}} = \dfrac{1}{2}.\widehat {ABC}\)

Vì CD là tia phân giác của góc ACB nên \(\widehat {{C_1}} = \widehat {{C_2}} = \dfrac{1}{2}.\widehat {ACB}\)

Xét \(\Delta BDP\) vuông tại P và \(\Delta BDR\) vuông tại R, ta có:

 \(\widehat {{B_2}} = \widehat {{B_1}}\)

BD chung

\( \Rightarrow \Delta BDP = \Delta BDR\) ( cạnh huyền – góc nhọn)

\( \Rightarrow \) DP = DR ( 2 cạnh tương ứng) (1)

b) Xét \(\Delta CDP\) vuông tại P và \(\Delta CDQ\) vuông tại Q, ta có:

 \(\widehat {{C_2}} = \widehat {{C_1}}\)

CD chung

\( \Rightarrow \Delta CDP = \Delta CDQ\) ( cạnh huyền – góc nhọn)

\( \Rightarrow \) DP = DQ ( 2 cạnh tương ứng) (2)

c) Từ (1) và (2), ta được: DR = DQ ( cùng bằng DP).

D nằm trên tia phân giác của góc A do D cách đều AB và AC.

5 tháng 7 2017

Giải bài 69 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7Giải bài 69 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

Gọi bán kính cung tròn tâm A là r, bán kính cung tròn tâm B và C là r’.

Xét ΔABD và ΔACD có:

    AB = AC (=r)

    DB = DC (=r')

    AD cạnh chung

Nên ΔABD = ΔACD (c.c.c)

QUẢNG CÁO

Giải bài 69 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

- Gọi H là giao điểm của AD và a

ΔAHB và ΔAHC có

    AB = AC (= r)

    Giải bài 69 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

    AH cạnh chung

⇒ ΔAHB = ΔAHC (c.g.c)

Giải bài 69 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

10 tháng 4 2020

∆ABD và ∆ACD có:

AB = AC (gt)

DB = DC (gt)

AD cạnh chung.

Nên ∆ABD = ∆ACD (c.c.c)

=> A= A2 

Gọi H là giao điểm của AD và a.

∆AHB  và  ∆AHC có:

AB = AC (gt)

A1 = A( cmt ) 

AH cạnh chung.

Nên ∆AHB = ∆AHC (c.g.c)

Suy ra: H1 = H2

Ta lại có:

 H1 + H2 = 180

⇒H= H2 = 90

Vậy AD ⊥ a 

10 tháng 4 2020

P/s : Cứ nghĩ làm xong bài sẽ vẽ hình ai ngờ phần vẽ hình bị lỗi nên lại phải làm lại ( khóc hết nước mắt ) 

                                                                                          Giải 

Xét ∆ABD và ∆ACD có : 

AB = AC (gt)

DB = DC (gt)

AD cạnh chung.

Nên ∆ABD = ∆ACD (c.c.c)

\(\Rightarrow\) BAD = CAD ( 2 góc tương ứng ) 

Gọi H là giao điểm của AD và a 

Xét ∆AHB  và ∆AHC có : 

AB = AC (gt) 

BAH = CAH ( cmt ) 

AH cạnh chung 

Nên ∆AHB = ∆AHC (c.g.c) 

\(\Rightarrow\) AHB = AHC ( 2 góc tương ứng ) 

Ta lại có : 

AHB + AHC = 180 ( 2 góc kề bù ) 

\(\Rightarrow\) AHB = AHC = 90 

\(\Rightarrow\) AH ⊥ BC

\(\Rightarrow\) AD ⊥  a