Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử tồn tại x, y, z, t thỏa mãn.
Ta chứng minh bổ đề: Cho \(a,b\in\mathbb{Z}\). Khi đó \(a^2+b^2\vdots 3\Leftrightarrow a,b\vdots 3\).
Thật vậy, ta thấy nếu \(a,b\vdots 3\Rightarrow a^2+b^2\vdots 3\).
Nếu \(a^2+b^2\vdots 3\): Do \(a^2,b^2\equiv0;1\left(mod3\right)\) nên ta phải có \(a^2,b^2\equiv0\left(mod3\right)\Rightarrow a,b⋮3\).
Bổ đề dc cm.
Trở lại bài toán: Ta có 2019 chia hết cho 3 nên \(x^2+y^2⋮3\Rightarrow x,y⋮3\Rightarrow x^2+y^2⋮9\).
Mà 2019 không chia hết cho 9 nên \(z^2+t^2⋮3\Leftrightarrow z,t⋮3\).
Đặt x = 3x', y = 3y', z = 3z', t = 3t'.
Ta có \(2019=\dfrac{x^2+y^2}{z^2+t^2}=\dfrac{x'^2+y'^2}{z'^2+t'^2}\).
Cmtt, ta có \(x',y',z',t'⋮3\).
Lặp lại nhiều lần như vậy, ta có \(x,y,z,t⋮3^k\forall k\in N\).
Do đó x = y = z = t = 0 (vô lí).
Vậy không tồn tại...
Giả sử con muỗi nặng m (gam), còn con voi nặng V (gam). Ta có
.
Cộng hai về với -2mV. Ta có
- 2mV + = - 2mV +
hay .
Lấy căn bậc hai mỗi vế của bất đẳng thức trên, ta được:
Do đó m - V = V - m
Từ đó ta có 2m = 2V, suy ra m = V. Vậy con muỗi nặng bằng con voi (!).
Hướng dẫn giải:
Phép chứng minh sai ở chỗ: sau khi lấy căn bậc hai mỗi vế của đẳng thức . Ta được kết quả │m - V│ = │V - m│ chứ không thể có m - V = V - m.