Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Nhớ không nhầm thì bạn đã đăng bài này rồi mà.
\(2\sqrt{2}m-\sqrt{2}-2m+1=3-m\)
\(\Leftrightarrow 2\sqrt{2}m-2m+m=3-1+\sqrt{2}\)
\(\Leftrightarrow m(2\sqrt{2}-1)=2+\sqrt{2}\Rightarrow m=\frac{2+\sqrt{2}}{2\sqrt{2}-1}=\frac{6+5\sqrt{2}}{7}\)
\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\\ < =>\frac{1-\sqrt{2}}{1+\sqrt{2}\left(1-\sqrt{2}\right)}+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+...+\frac{\sqrt{99}-\sqrt{100}}{\left(\sqrt{99}+\sqrt{100}\right)\sqrt{99}-\sqrt{100}}\\ < =>\frac{1-\sqrt{2}}{1-2}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+...+\frac{\sqrt{99}-\sqrt{100}}{99-100}\)
\(=\frac{1-\sqrt{2}}{-1}+\frac{\sqrt{2}-\sqrt{3}}{-1}+...+\frac{\sqrt{99}-\sqrt{100}}{-1}\\ =\frac{1-\sqrt{2}+\sqrt{2}-\sqrt{3}+\sqrt{3}-\sqrt{4}+...+\sqrt{99}-10}{-1}\\ =\frac{1-10}{-1}\\ =\frac{-9}{-1}\\ =9\)
P/s: Chuyền hết dấu tương đương ở trên thành bằng nhé, mình bị nhầm
Ta có:
\(P=\sqrt{\frac{15}{2}}\cdot\sqrt{\frac{10\left(a-1\right)^2}{3}}\\ =\sqrt{\frac{15}{2}\cdot\frac{10\left(a-1\right)^2}{3}}\\ =\sqrt{25\left(a-1\right)^2}\\ =5\left|a-1\right|\\ =\left[{}\begin{matrix}5\left(a-1\right)\left(a=1\right)\\5\left(1-a\right)\left(a< 1\right)\end{matrix}\right.\\ =\left[{}\begin{matrix}5a-5\\5-5a\end{matrix}\right.\)
P.s: Ko chắc lắm nha :v
Lời giải:
ĐKXĐ: $m\neq \frac{1}{2}$
Từ PT $\sqrt{2}-1=\frac{3-m}{2m-1}\Rightarrow (\sqrt{2}-1)(2m-1)=3-m$
$\Leftrightarrow 2+\sqrt{2}=m(2\sqrt{2}-1)$
$\Leftrightarrow m=\frac{2+\sqrt{2}}{2\sqrt{2}-1}=\frac{6+5\sqrt{2}}{7}$ (thỏa mãn)
Vậy...