K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2019

\(C=5^{100}-5^{99}-5^{98}-5^{97}-...-5^2-5\)

\(C=5^{100}-\left(5^{99}+5^{98}+5^{97}+...+5^2+5\right)\)

\(C=5^{100}-\left(5+5^2+...+5^{97}+5^{98}+5^{99}\right)\)

\(\text{Đặt }B=5+5^2+...+5^{97}+5^{98}+5^{99}\)

\(5B=5^2+5^3+...+5^{98}+5^{99}+5^{100}\)

\(5B-B=5^{100}-5\)

\(4B=5^{100}-5\)

\(B=\frac{5^{100}-5}{4}\)

Thay \(B=\frac{5^{100}-5}{4}\) vào biểu thức ta có : 

\(C=5^{100}-\frac{5^{100}-5}{4}\)

16 tháng 8 2019

\(C=5^{100}-5^{99}-5^{98}-5^{97}-...-5^2-5\)

\(C=5^{100}-\left(5^{99}+5^{98}+5^{97}+...+5^2+5\right)\)

\(C=5^{100}-\left(5+5^2+...+5^{97}+5^{98}+5^{99}\right)\)

\(\text{Đặt }B=5+5^2+...+5^{97}+5^{98}+5^{99}\)

\(5B=5^2+5^3+...+5^{98}+5^{99}+5^{100}\)

\(5B-B=5^{100}-5\)

\(4B=5^{100}-5\)

Thay \(4B=5^{100}-5\)  và \(3B=\frac{\left(5^{100}-5\right)}{3}\) vào biểu thức ta có : 

\(C=5^{100}-\left(5^{100}-5\right)+\frac{\left(5^{100}-5\right)}{3}\)

\(C=5^{100}-5^{100}+5+\frac{5^{100}-5}{3}\)

\(c=5+\frac{5^{100}-5}{3}\)

21 tháng 12 2016

\(\frac{x+5}{100}+\frac{x+5}{99}=\frac{x+5}{98}+\frac{x+5}{97}\)

\(\Leftrightarrow\frac{x+5}{100}+\frac{x+5}{99}-\frac{x+5}{98}-\frac{x+5}{97}=0\)

\(\Leftrightarrow\left(x+5\right)\left(\frac{1}{100}+\frac{1}{99}-\frac{1}{98}-\frac{1}{97}\right)=0\)

\(\Leftrightarrow x+5=0\) (Vì: \(\frac{1}{100}+\frac{1}{99}-\frac{1}{98}-\frac{1}{97}\ne0\) )

\(\Leftrightarrow x=-5\)

21 tháng 12 2016

\(\frac{x+5}{100}+\frac{x+5}{99}=\frac{x+5}{98}+\frac{x+5}{97}\)

\(\Rightarrow\frac{x+5}{100}+\frac{x+5}{99}-\frac{x+5}{98}-\frac{x+5}{97}=0\)

\(\Rightarrow\left(x+5\right)\left(\frac{1}{100}+\frac{1}{99}-\frac{1}{98}-\frac{1}{97}\right)=0\)

\(\frac{1}{100}+\frac{1}{99}-\frac{1}{98}-\frac{1}{97}\ne0\)

\(\Rightarrow x+5=0\)

\(\Rightarrow x=-5\)

Vậy \(x=-5\)

 

9 tháng 7 2023

\(A=1-2+3-4+5-6+7-8+...+99-100\)

\(A=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)

\(A=\left(-1\right).50\)

\(A=-50\)

\(B=1+3-5-7+9+11-...-397-399\)

\(B=1-2+2-2+2-...+2-2-399\)

\(B=1-399\)

\(B=-398\)

\(C=1-2-3+4+5-6-7+...+97-98-99+100\)

\(C=-1+1-1+1-...-1+1\)

\(C=0\)

\(D=2^{2024}-2^{2023}-...-1\)

\(D=2^{2024}-\left(2^0+2^1+2^2+...2^{2023}\right)\)

\(D=2^{2024}-\left(\dfrac{2^{2024}-1}{2-1}\right)\)

\(D=2^{2024}-\left(2^{2024}-1\right)\)

\(D=2^{2024}-2^{2024}+1\)

\(D=1\)

9 tháng 7 2023

A = 1 - 2 + 3  - 4 + 5 - 6 + 7 - 8 +...+ 99 - 100

A = (1 - 2) + ( 3 - 4) + ( 5- 6) +....+(99 - 100)

Xét dãy số 1; 3; 5;...;99

Dãy số trên là dãy số cách đều có khoảng cách là: 3 - 1 = 2

Dãy số trên có số số hạng là: (99 - 1) : 2 + 1 = 50 (số)

Vậy tổng A có 50 nhóm, mỗi nhóm có giá trị là: 1- 2 = -1

A =  - 1\(\times\)50 = -50

b, 

B = 1 + 3 - 5 - 7 + 9 + 11-...- 397 - 399

B = ( 1 + 3 - 5 - 7) + ( 9 + 11 - 13 - 15) + ...+( 393 + 395 - 397 - 399)

B = -8 + (-8) +...+ (-8)

Xét dãy số 1; 9; ...;393

Dãy số trên là dãy số cách đều có khoảng cách là: 9-1 = 8

Dãy số trên có số số hạng là: ( 393 - 1): 8 + 1 = 50 (số hạng)

Tổng B có 50 nhóm mỗi nhóm có giá trị là -8

B = -8 \(\times\) 50 = - 400

c, 

C = 1 - 2 - 3 + 4 + 5 -  6 +...+ 97 - 98 - 99 +100

C = ( 1 - 2 - 3 + 4) + ( 5 - 6 - 7+ 8) +...+ ( 97 - 98 - 99 + 100)

C = 0 + 0 + 0 +...+0

C = 0

d,   D =           22024 - 22023- ... +2 - 1

    2D = 22005- 22004 + 22003+...- 2

2D + D = 22005 - 1

 3D      = 22005 - 1

   D      = (22005 - 1): 3

26 tháng 8 2019

a

\(A=1+3+3^2+3^3+....+3^{100}\)

\(3A=3+3^2+3^3+3^4+.....+3^{101}\)

\(2A=3^{101}-1\)

\(A=\frac{3^{101}-1}{2}\)

b

\(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{99}}\)

\(2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)

\(B=1-\frac{1}{2^{99}}\)

c

\(C=5^{100}-5^{99}+5^{98}-5^{97}+....+5^2-5+1\)

\(5C=5^{101}-5^{100}+5^{99}-5^{98}+....+5^3-5^2+5\)

\(6C=5^{101}+1\)

\(C=\frac{5^{101}+1}{6}\)

\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\)

\(\Rightarrow\frac{1}{2}B=\)\(\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{100}\)

\(\Rightarrow B-\frac{1}{2}B=\left[\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\right]-\left[\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{100}\right]\)

\(\Rightarrow\frac{1}{2}B=\frac{1}{2}-\left(\frac{1}{2}\right)^{100}\Rightarrow B=\left[\frac{1}{2}-\left(\frac{1}{2}\right)^{100}\right].2\)

3 tháng 8 2017

a/ tính 5b

lấy 5b+b

Số các số hạng là:

(2000 - 100) : 1 + 1 = 1901

Tổng là:

(2000 + 100) x 1901 : 2 = 1996050

Đáp số : 1996050

= [(2000-100)+1]: 2 x (2000+100)= 1996050

9 tháng 8 2016

C=\(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

  =\(\frac{1}{100}-\left(\frac{1}{2.1}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

  =\(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

  =\(\frac{1}{100}-\left(1-\frac{1}{100}\right)\)

  =\(\frac{1}{100}-\frac{99}{100}\)

  =\(\frac{-98}{100}=\frac{-49}{50}\)

10 tháng 8 2016

C=1/100 -1/100.99 -1/99.98 -1/98.97-......- 1/3.2 -1/2.1 
= 1/100 - (1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1) 
Đặt A = 1/100.99 + 1/99.98 + 1/98.97-......+ 1/3.2 +1/2.1 => C = 1/100 - A 
Dễ thấy 1/2.1 = 1/1 - 1/2 
1/3.2 = 1/2 - 1/3 
..................... 
1/99.98 = 1/98 - 1/99 
1/100.99 = 1/99 - 1/100 
=> cộng từng vế với vế ta

\(A=1+3+3^2+3^3+...+3^{99}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{100}\)

\(\Rightarrow3A-A=2A=\left(3+3^2+3^3+...+3^{100}\right)-\left(\text{​​}\text{​​}\text{​​}1+3^2+3^3+...+3^{99}\right)\)

\(\Rightarrow2A=3^{100}-1\Rightarrow A=\frac{3^{100}-1}{2}\)

còn 2 bài nữa bạn ơi