Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C^1_n+C^2_n=15\)
=>\(n+\dfrac{n!}{\left(n-2\right)!\cdot2!}=15\)
=>\(n+\dfrac{n^2-n}{2}=15\)
=>2n+n^2-n=30
=>n^2+n-30=0
=>n=5
=>(x+2/x^4)^5
SHTQ là: \(C^k_5\cdot x^{5-k}\cdot\left(\dfrac{2}{x^4}\right)^k=C^k_5\cdot x^{5-5k}\cdot2^k\)
SỐ hạng ko chứa x tương ứng với 5-5k=0
=>k=1
=>Số hạng đó là 5*2=10
Ta có:
\(\left(3x-1\right)^5\)\(=\sum\limits^5_{k=0}.\left(-1\right)^k.C^k_5.\left(3x\right)^{5-k}.1^k\)
\(=\sum\limits^5_{k=0}.\left(-1\right)^k.C^k_5.3^{5-k}.x^{5-k}.1\)
Để số hạng tổng quát có chứa \(x^4\) thì \(5-k=4\Rightarrow k=1\)
Vậy hệ số của \(x^4\) là: \(\left(-1\right)^1.C^1_5.3^{5-1}.1=-405\)
→ Không có đáp án
Akai HarumaAce LegonaNguyễn Thanh HằngNguyễn Huy TúMysterious PersonVõ Đông Anh TuấnNguyễn Thanh HằngVũ Minh Tuấn
Thanks you