K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2021

\(C=2\left(x-y\right)+13x^3y^2\left(x-y\right)-15xy\left(x-y\right)+1=1\)

Vậy C=1

9 tháng 3 2021

\(C=2x-2y+13x^3y^2\left(x-y\right)+15\left(y^2x-x^2y\right)+\left(\dfrac{2015}{2016}\right)^0\)

\(C=2\left(x+y\right)+13x^3y^2\left(x-y\right)+15xy\left(x-y\right)+1\)

Mà x - y = 0 (bài cho)

\(\Rightarrow C=2.0+13x^3y^2.0+15xy.0+1\)

\(C=1\)

Vậy C=1

16 tháng 1 2020

\(C = 2.(x-y)+13x^3y^2.(x-y)+15.xy.\)

\((y-x) +1\)

\(C = 2.( x- y )+13x^3y^2.(x-y)-15.xy.\)

\(( x - y )+1\)

\(C = (x - y)(2 + 13x^3y^2 - 15 ) +1\)

\(C =(x- y)(13x^3y^2 - 13 )+ 1\)

11 tháng 8 2017

Ta có:\(C=2\left(x-y\right)+13x^3y^2\left(x-y\right)+15xy\left(y-x\right)+1\)Thế \(x-y=0\) vào C ta được:

\(C=0+0+0+1\)

C = 0

11 tháng 8 2017

sai

a: \(A=2\left(x+y\right)+3xy\left(x+y\right)+5x^2y^2\left(x+y\right)=0\)

b: \(B=3xy\left(x+y\right)+2x^2y\left(x+y\right)=0\)

20 tháng 12 2023

\(\Rightarrow\)A=2(x+y)+3xy(x+y)+5x2y2(x+y)

Thay x+y=0 vào A

\(\Rightarrow\)A=0

17 tháng 2 2017

a,thay x=1,y=-1

=>A=(15.1+2.-1)-[(2.1+3)-(5.1+-1)]=13-[5-4]=12

b,thay=-1/2,y=1/7

=>B=4

17 tháng 2 2017

thks yeu

23 tháng 4 2017

A=2(x+y)+3xy(x+y)+5x2y2(x+y)+2

A=2.0+3xy.0+5x2y2.0+2

A=2

B=xy(x+y)+2x2y (x+y)+5

B=xy.0+2x2y.0+5=5

12 tháng 5 2020

a,Ta có 2(x+y)+3xy(x+y)+5x2y2(x+y)+4

Xg thay x+y=0 vào là dc bn nhó

Chúc bn hok tốt

11 tháng 3 2017

Vì \(\left(x+2y-3\right)^{2016}\ge0;\left|2x+3y-5\right|\ge0\forall x;y\)

\(\Rightarrow\left(x+2y-3\right)^{2016}+\left|2x+3y-5\right|\ge0\forall x;y\)

Mà \(\left(x+2y-3\right)^{2016}+\left|2x+3y-5\right|=0\) \(\Leftrightarrow\left(x+2y-3\right)^{2016}=0\) ; \(\left|2x+3y-5\right|=0\)

\(\Rightarrow x+2y-3=0;2x+3y-5=0\)

\(\Leftrightarrow x+2y=3;2x+3y=5\)

\(\Rightarrow x=3-2y\)

\(\Rightarrow2\left(3-2y\right)+3y=5\Leftrightarrow6-4y+3y=5\Leftrightarrow6-y=5\Rightarrow y=1\)

\(\Rightarrow x=3-2.1=1\)

Vậy \(x=1;y=1\)

2: Thay \(x=\dfrac{1}{2}\) và y=2 vào M, ta được:

\(M=\dfrac{2\cdot\left(\dfrac{1}{2}\right)^2\cdot2-1.2\cdot\left(3\cdot\dfrac{1}{2}-2\cdot2\right)}{\dfrac{1}{2}\cdot2}\)

\(=4\cdot\dfrac{1}{4}-1.2\left(\dfrac{3}{2}-4\right)\)

\(=1-1.8+4.8\)

\(=4\)

1: Ta có: \(\left(-\dfrac{2}{3}x^3y^2\right)z\cdot5xy^2z^2\)

\(=\left(-\dfrac{2}{3}\cdot5\right)\cdot\left(x^3\cdot x\right)\cdot\left(y^2\cdot y^2\right)\cdot\left(z\cdot z^2\right)\)

\(=\dfrac{-10}{3}x^4y^4z^3\)