Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=6x^4-9x^3+3x^2-4x^3+6x^2-2x+10x^2-15x+5\)
\(=6x^4-13x^3+19x^2-17x+5\)
b: \(=6x^4-\dfrac{9}{4}x^3-\dfrac{9}{2}x^2-\dfrac{8}{3}x^3+x^2+2x-\dfrac{20}{3}x^2+\dfrac{5}{2}x+5\)
\(=6x^4-\dfrac{59}{12}x^3-\dfrac{67}{6}x^2+\dfrac{9}{2}x+5\)
c: \(=3x^4-\dfrac{9}{8}x^3-\dfrac{3}{4}x^2+8x^3-3x^2-6x-\dfrac{4}{3}x^2+\dfrac{1}{2}x+1\)
\(=3x^4-\dfrac{55}{8}x^3-\dfrac{25}{12}x^2-\dfrac{11}{2}x+1\)
bài 4: Ta có \(x^2-2y^2=xy\Rightarrow x^2-y^2=xy+y^2\Rightarrow\left(x-y\right)\left(x+y\right)=y\left(x+y\right)\)
\(x-y=y\Rightarrow x=2y\)
thay x=2y vào A ta đc :
A = \(\dfrac{x-y}{x+y}=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)
Bài 1:
Ta có: \(x+y+z=0\Rightarrow z=-x-y\Rightarrow z^2=(-x-y)^2\)
\(\Rightarrow x^2+y^2-z^2=x^2+y^2=x^2+y^2-(-x-y)^2=-2xy\)
Hoàn toàn tương tự:
\(y^2+z^2-x^2=-2yz; z^2+x^2-y^2=-2xz\)
Do đó:
\(P=\frac{(x^2+y^2-z^2)(y^2+z^2-x^2)(z^2+x^2-y^2)}{16xyz}=\frac{(-2xy)(-2yz)(-2xz)}{16xyz}=\frac{-xyz}{2}\)
a: \(B=\left(x^2+y\right)\left(y+\dfrac{1}{4}\right)+x^2y^2+\dfrac{3}{4}\left(y+\dfrac{1}{3}\right)\)
\(=x^2y+\dfrac{1}{4}x^2+y^2+\dfrac{1}{4}y+x^2y^2+\dfrac{3}{4}y+\dfrac{1}{4}\)
\(=x^2y+x^2y^2+y^2+y+\dfrac{1}{4}x^2+\dfrac{1}{4}\)
\(=y\left(x^2+1\right)+y^2\left(x^2+1\right)+\dfrac{1}{4}\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(y+\dfrac{1}{2}\right)^2\)
\(C=x^2y^2+1+\left(x^2-y\right)\left(1-y\right)\)
\(=x^2y^2+1+x^2-x^2y-y+y^2\)
\(=x^2y^2-y+x^2+y^2-x^2y+1\)
\(=y^2\left(x^2+1\right)-y\left(x^2+1\right)+x^2+1\)
\(=\left(x^2+1\right)\left(y^2-y+1\right)\)
=>\(A=\dfrac{y^2+y+\dfrac{1}{4}}{y^2-y+1}\)
b: \(=\dfrac{y^2-y+1+2y-\dfrac{3}{4}}{y^2-y+1}=1+\dfrac{2y-\dfrac{3}{4}}{y^2-y+1}>=1\)
Dấu = xảy ra khi y=3/8
a: \(=\left(\dfrac{x}{y\left(x-y\right)}-\dfrac{2x-y}{x\left(x-y\right)}\right):\dfrac{x+y}{xy}\)
\(=\dfrac{x^2-2xy+y^2}{xy\left(x-y\right)}\cdot\dfrac{xy}{x+y}\)
\(=\dfrac{\left(x-y\right)^2}{\left(x-y\right)\left(x+y\right)}=\dfrac{x-y}{x+y}\)
b: \(=\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x-y\right)\left(x+y\right)}\cdot\dfrac{x-y}{2y}\)
\(=\dfrac{4xy+4y^2}{2\left(x+y\right)}\cdot\dfrac{1}{2y}=\dfrac{4y\left(x+y\right)}{4y\left(x+y\right)}=1\)
\(a,\frac{x}{xy-y^2}+\frac{2x-y}{xy-x^2}:\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(=\left(\frac{x}{y\left(x-y\right)}+\frac{y-2x}{x\left(x-y\right)}\right):\left(\frac{y}{xy}+\frac{x}{xy}\right)\)
\(=\left(\frac{x-y}{x\left(x-y\right)}\right):\left(\frac{x+y}{xy}\right)\)
\(=\frac{1}{x}.\frac{xy}{x+y}=\frac{y}{x+y}\)
2)
a) \(5x^2y-10xy^2\)
\(=5xy\left(x-2y\right)\)
b) \(3\left(x+3\right)-x^2+9\)
\(=3\left(x+3\right)-\left(x^2-3^2\right)\)
\(=3\left(x+3\right)-\left(x-3\right)\left(x+3\right)\)
\(=\left(x+3\right)\left[3-\left(x-3\right)\right]\)
\(=\left(x+3\right)\left(3-x+3\right)\)
\(=\left(x+3\right)\left(6-x\right)\)
c) \(x^2-y^2+xz-yz\)
\(=\left(x^2-y^2\right)+\left(xz-yz\right)\)
\(=\left(x-y\right)\left(x+y\right)+z\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+z\right)\)
3)
a) \(A=\dfrac{x^2}{x^2-4}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\)
\(\Leftrightarrow A=\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\)
Điều kiện xác định là: \(\left\{{}\begin{matrix}x-2\ne0\Rightarrow x\ne2\\x+2\ne0\Rightarrow x\ne-2\end{matrix}\right.\)
b) \(A=\dfrac{x^2}{x^2-4}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\)
\(\Leftrightarrow A=\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x}{x-2}+\dfrac{2}{x+2}\) MTC: \(\left(x-2\right)\left(x+2\right)\)
\(\Leftrightarrow A=\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow A=\dfrac{x^2-x\left(x+2\right)+2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow A=\dfrac{x^2-x^2-2x+2x-4}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow A=\dfrac{-4}{\left(x-2\right)\left(x+2\right)}\)
c) Thay \(x=1\) và biểu thức A ta được:
\(\dfrac{-4}{\left(1-2\right)\left(1+2\right)}=\dfrac{-4}{\left(-1\right).3}=\dfrac{-4}{-3}=\dfrac{4}{3}\)
Vậy giá trị của biểu thức A tại \(x=1\) là \(\dfrac{4}{3}\)
\(x^2y;\left(-2\right)^3xy^7;-13\)
x^2y;-13;(-2)^3*xy^7