K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2018

Cu ghi đề như cc

a: Xét ΔBAC có \(BC^2=AB^2+AC^2\)

nên ΔBAC vuông tại A

Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

Suy ra: BA=BE và DA=DE

Suy ra: BD là đường trung trực của AE

b: Sửa đề: DE cắt BA tại I

 Xét ΔBIC có 

IE là đường cao

CA là đường cao

IE cắt CA tại D

DO đó: D là trực tâm của ΔIBC

17 tháng 2 2020

Tham khảo hình:

a) Phải là \(MC=NB\) mới đúng nhé.

+ Vì \(M\) là trung điểm của \(AC\left(gt\right)\)

b) Đề sai rồi bạn, hay là nhầm sang đề khác rồi.

Chúc bạn học tốt!

17 tháng 2 2020

ko, trog đề là như vậy nhưng chắc giáo viên cho sai , cảm ơn bạn đã nhắc mik!

Xét tứ giác ADBC có

M la trung điểm chung của AB và DC

nên ADBC là hình bình hành

=>góc ADB=góc ACB

Xét ΔABC có

MN//BC

AM/AB=1/2

=>N là trung điểm của AC

Xét ΔNBC và ΔNEA có

góc NCB=góc NAE

NC=NA

góc BNC=góc ENA

=>ΔNBC=ΔNEA

=>NB=NE

=>AECB là hình bình hành

=>CE=AB=AC=BD và góc AEC=góc ABC

=>góc AEC=góc ADB

Gọi giao của BD và CE là K

Xét ΔKDE có góc KDE=góc KED

nên ΔKDE cân tại K

=>KD=KE

=>KB=KC

=>K nằm trên trung trực của BC

mà AH là trung trực của BC

nên A,H,K thẳng hàng

a) Xét tứ giác BECD có : 

M là trung điểm ED 

M là trung điểm BC

=》 BECD là hình bình hành 

=》BE//DC 

b) Vì BECD là hình bình hành 

=》EC//BD 

Mà NBD = 90°

Lại có : NBD + CNB = 180°

=》 CNB = 90°

Vậy CN\(\perp\)AB 

Hay CE\(\perp\)AB

24 tháng 8 2020

Bạn làm lại theo cách làm của hình Tam Giác giúp mình

20 tháng 1 2021

a/ Ta có \(\widehat{NCE}=\widehat{ACB}\) (góc đối đỉnh) mà \(\widehat{ACB}=\widehat{ABC}\) (do tg ABC cân tại A) \(\Rightarrow\widehat{ABC}=\widehat{NCE}\)

Xét tg vuông MBD và tg vuông NCE có

BD=CE (đề bài) và \(\widehat{ABC}=\widehat{NCE}\left(cmt\right)\) => tg MBD = tg NCE (hai tg vuông có cạnh góc vuông và 1 góc nhọn tương ứng = nhau thì bằng nhau) => MD=NE

b/ Xét tứ giác MEND có

\(MD\perp BC;NE\perp BC\) => MD//NE

MD=NE (cmt)

=> Tứ giác MEND là hình bình hành (Tứ giác có cặp cạnh đối song song và bằng nhau thì tứ giác đó là hbh)

MN và DE là 2 đường chéo của hbh MEND => I là trung điểm của DE (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

c/ ta có

\(\widehat{ABC}=\widehat{ACB}\)

\(\widehat{ABO}=\widehat{ABC}+\widehat{CBO}=90^o\)

\(\widehat{ACO}=\widehat{ACB}+\widehat{BCO}=90^o\)

\(\Rightarrow\widehat{CBO}=\widehat{BCO}\) => tam giác BOC cân tại O => BO=CO

Xét tg vuông ABO và tg vuông ACO có

AB=AC (Do tg ABC cân tại A)

BO=CO (cmt)

\(\widehat{ABO}=\widehat{ACO}=90^o\)

=> tg ABO = tg ACO (c.g.c) \(\Rightarrow\widehat{BAO}=\widehat{CAO}\) => AO là phân giác của \(\widehat{BAC}\)

=> BO là đường trung trực của BC (Trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao, đường trung trực)