Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)
\(\left|x-1\right|^{2023}>=0\forall x\)
=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)
mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)
nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)
=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)
\(P=x^{2023}+\left(y-10\right)^{2023}\)
\(=1^{2023}+\left(9-10\right)^{2023}\)
=1-1
=0
c: \(\left|x-3\right|>=0\forall x\)
=>\(\left|x-3\right|+2>=2\forall x\)
=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)
mà \(\left|y+3\right|>=0\forall y\)
nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)
=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)
Dấu '=' xảy ra khi x-3=0 và y-3=0
=>x=3 và y=3
\(a=2022.\left|x^2+1\right|+2023\)
\(\Rightarrow a=2022.\left(x^2+1\right)+2023\left(\left|x^2+1\right|>0,\forall x\right)\)
mà \(\left(x^2+1\right)\ge1,\forall x\)
\(\Rightarrow a=2022.\left(x^2+1\right)+2023\ge2022.1+2023=4045\)
\(\Rightarrow GTNN\left(a\right)=4045\left(x=0\right)\)
Ta có:(các số như 14-x/4-x đc vt dưới dạng p số nha)
14-x/4-x=10+4-x/4-x=10/4-x+4-x/4-x=(10/4-x)+1
Để (10/4-x)+1 đạtGTNN=>10/4-x đạt GTNN =>4-x đạt GTLN
mà -x<_(bé hơn hoặc bằng)0
=> 4-x<_4
Vì 4-x đạt GTLN =>4-x=4=>x=0
khi đó, thay vào biểu thức, ta có:
14-0/4-0=14/4=3,5
Vậy GTNN của P bằng 3,5<=>x=0
ta có
\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)
Dấu bằng xảy ra khi \(-5\le x\le-2\)
\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)
Dấu bằng xảy ra khi \(x=2\)
\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)
Dấu bằng xảy ra khi \(x\ge2\)
Ta có:\(\dfrac{14-x}{4-x}=\dfrac{10+4-x}{4-x}=\dfrac{10+\left(4-x\right)}{4-x}=1+\dfrac{10}{4-x}\)
Vì x∈Z,4∈Z=> 4-x∈Z
Để P đạt giá trị nhỏ nhất thì \(\dfrac{10}{4-x}\)phải đạt giá trị nhỏ nhất
=>4-x đạt giá trị lớn nhất
Và 4-x<0;4-x∈Z
Do đó 4-x=-1
=>x=4+1=5
Khi đó P=\(\dfrac{14-5}{4-5}\)=-9
Vậy P đạt giá trị nhỏ nhất bằng -9 khi x=5
2: B=|x+5|-|x-2|<=|x+5-x+2|=7
Dấu = xảy ra khi -5<=x<=2
(x+7)^2+2023>=2023 với mọi x
Dấu = xảy ra khi x=-7