K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2015

Đinh Tuấn Việt đọc kĩ lại đề đi. 2 số không nguyên tố cùng nhau.

25 tháng 6 2015

2 số nguyên tố cùng nhau có ƯCLN là 1. Vậy ƯCLN(3n+1 ; 5n+4) = 1

21 tháng 12 2015

Câu hỏi tương tự nhé bạn ! 
UCLN = 7 
Tick mình nha

6 tháng 1 2016

Gọi ƯCLN(3n + 1, 5n + 4) = d (d thuộc N*, d khác 1)

Ta có: 

3n + 1 chia hết cho d => 5(3n + 1) chia hết cho d => 15n + 5 chia hết cho d

5n + 4 chia hết cho d => 3(5n + 4) chia hết cho d => 15n + 12 chia hết cho d

=> (15n + 12) - (15n + 5) chia hết cho d

=> 7 chia hết cho d => d \(\in\) Ư(7) = {-1;1;-7;7}

Mà d thuộc N*

=> d \(\in\){1;7}

Mà d khác 1 

=> d = 7

vậy ƯCLN(3n + 1, 5n + 4) = 7

6 tháng 1 2016

Gọi d là ƯCLN(3n+1,5n+4)
Ta có:3n+1 chia hết cho d=>5*(3n+1)chia hết cho d
         5n+4 chia hết cho d=>3*(5n+4)chia hết cho d
=>3*(5n+4)- 5*(3n+1) chia hết cho d
hay 15n+12-15n+5 chia hết cho d
=>7 chia hết cho d
=>d thuộc Ư(7)
=>d={1,7}
Vì 3n+1 và 5n+4 ko phải là 2 số nguyên tố cùng nhau
Vậy ƯCLN(3n+1,5n+4)=7

7 tháng 11 2015

Gọi ƯCLN ( 3n+1 ; 5n+4 ) là d ( d là số tự nhiên )  

=> 3n+1 chia hết cho d ; 5n+4 chia hết cho d 

=> 5.(3n+1) chia hết cho d ; 3.(5n+4) chia hết cho d 

=> 15n+5 chia hết cho d ; 15n+12 chia hết cho d 

=> 15n+12  - (15n+5) chia hết cho d 

=> 7 chia hết cho d 

=> d= 1;7 

=> ​3n + 1 và 5n + 4 không phải là 2 số nguyên tố cùng nhau.

=> d= 7

=> ƯCLN ( 3n+1 ; 5n+4 ) = 7

19 tháng 10 2015

 

Gọi d là ƯC của 3n+1 và 5n+4 => 3n+1 và 5n+4 cùng chia hết cho d

=> 5(3n+1)=15n+5 chia hết cho d và 3(5n+4)=15n+12 cũng chia hết cho d

=> (15n+12)-(15n+5)=7 cũng chia hết cho d => d thuộc {1;7}

=> d lớn nhất =7 nên ƯC của 3n+1 và 5n+4 là 7

24 tháng 1 2018

Để A rút gọn được <=> 63 và 3n + 1 phải có ước chung Có 63 = 32.7 =>3n + 1 có ước là 3 hoặc 7 Vì 3n + 1 ⋮ / ⋮̸ 3 => 3n + 1 có ước là 7 => 3n + 1 = 7k (k ∈ ∈ N) => 3n = 7k - 1 => n = 7 k − 1 3 7k−13 => n = 6 k + k − 1 3 6k+k−13 => n = 2 k + k − 1 3 2k+k−13 Để n ∈ N ⇒ k − 1 3 ∈ N ⇒ k = 3 a + 1 ( a ∈ N ) n∈N⇒k−13∈N⇒k=3a+1(a∈N) ⇒ n = 7 ( 3 a + 1 ) − 1 3 = 21 a + 7 − 1 3 = 21 a + 6 3 = 21 a 3 + 6 3 = 7 a + 2 ⇒n=7(3a+1)−13=21a+7−13=21a+63=21a3+63=7a+2 Vậy n có dạng 7a+2 thì A rút gọn được b, Để A là số tự nhiên <=> 3n + 1 ∈ ∈ Ư(63)={1;3;7;9;21;63} Ta có bảng: 3n+1 1 3 7 9 21 63 n 0 2/3 2 8/3 20/3 62/3 Vậy n ∈ ∈ {0;2}

18 tháng 2 2017

Đặt (3n+4, 5n+1) = d

\(\Rightarrow\) \(\left\{\begin{matrix}3n+4⋮d\\5n+1⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{\begin{matrix}5\left(3n+4\right)⋮d\\3\left(5n+1\right)⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{\begin{matrix}15n+20⋮d\\15n+3⋮d\end{matrix}\right.\)

\(\Rightarrow\) (15n+20) - (15n+3) \(⋮\) d

\(\Rightarrow\) 20 - 3 \(⋮\) d

\(\Rightarrow\) 17 \(⋮\) d

\(\Rightarrow\) d = \(\left\{1;17\right\}\)

Vì 3n+4 và 5n+1 không phải là hai số nguyên tố cùng nhau

\(\Rightarrow\) d \(\ne\) 1

\(\Rightarrow\) d = 17

Vậy (3n+4, 5n+1) = 17