K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)\(\dfrac{1}{2^2}<\dfrac{1}{1.2}\)

\(\dfrac{1}{3^3}<\dfrac{1}{2.3}\)

\(...\)

\(\dfrac{1}{8^2}<\dfrac{1}{7.8}\)

Vậy ta có biểu thức:

\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}<\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)

\(B= 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)

\(B<1-\dfrac{1}{8}=\dfrac{7}{8}<1\)

Vậy B < 1 (đpcm)

 

 

 

Giải:

a) Ta có:

1/22=1/2.2 < 1/1.2

1/32=1/3.3 < 1/2.3

1/42=1/4.4 < 1/3.4

1/52=1/5.5 < 1/4.5

1/62=1/6.6 < 1/5.6

1/72=1/7.7 < 1/6.7

1/82=1/8.8 <1/7.8

⇒B<1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8

   B<1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8

   B<1/1-1/8

   B<7/8

mà 7/8<1

⇒B<7/8<1

⇒B<1

b)S=3/1.4+3/4.7+3/7.10+...+3/40.43+3/43.46

   S=1/1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46

   S=1/1-1/46

   S=45/46

Vì 45/46<1 nên S<1

Vậy S<1

Chúc bạn học tốt!

7 tháng 1 2016

Số số hạng của 12 + 22 + 32 + .. + 202 : (202 - 1) : 10 + 1 = 20

Số số hạng của 1 + 2 + 3 + .. + 20 : (20 - 1) + 1 = 20

S = {(12+ 202) - (1 + 20)} x 20 : 2 = 1930

Lúc nãy nhầm làm tổng của 2 dãy

S=1930 mới đúng nha bạn

28 tháng 4 2022

Đặt A=11⋅2+12⋅3+...+17⋅8A=11⋅2+12⋅3+...+17⋅8

Dễ thấy: B=122+132+...+182B=122+132+...+182<A=11⋅2+12⋅3+...+17⋅8(1)<A=11⋅2+12⋅3+...+17⋅8(1)

Ta có:A=11⋅2+12⋅3+...+17⋅8A=11⋅2+12⋅3+...+17⋅8

=1−12+12−13+...+17−18=1−12+12−13+...+17−18

=1−18<1(2)=1−18<1(2)

Từ (1);(2)(1);(2) ta có: B<A<1⇒B<1

5 tháng 4

a: Ta có

A = \(\dfrac{1}{10}\) + \((\dfrac{1}{11}\) + \(\dfrac{1}{12}\) + ...+ \(\dfrac{1}{100}\)\()\)

⇒ A > \(\dfrac{1}{10}\) + \((\dfrac{1}{100}\) + \(\dfrac{1}{100}\) + ...+ \(\dfrac{1}{100}\)\()\)90 số hạng 

⇒ A > \(\dfrac{1}{10}\) + \(\dfrac{90}{100}\)

⇒ A > 1

vậy A > 1

b: ta có

S = (\(\dfrac{1}{21}\) + \(\dfrac{1}{22}\)\(\dfrac{1}{23}\) + \(\dfrac{1}{24}\) + \(\dfrac{1}{25}\))+(\(\dfrac{1}{26}\) + \(\dfrac{1}{27}\)\(\dfrac{1}{28}\) + \(\dfrac{1}{29}\) + \(\dfrac{1}{30}\))+(\(\dfrac{1}{31}\) + \(\dfrac{1}{32}\)\(\dfrac{1}{33}\) + \(\dfrac{1}{34}\) + \(\dfrac{1}{35}\))

⇒ S > (\(\dfrac{1}{25}\) + \(\dfrac{1}{25}\)\(\dfrac{1}{25}\) + \(\dfrac{1}{25}\) + \(\dfrac{1}{25}\))+(\(\dfrac{1}{30}\) + \(\dfrac{1}{30}\)\(\dfrac{1}{30}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{30}\))+(\(\dfrac{1}{35}\) + \(\dfrac{1}{35}\)\(\dfrac{1}{35}\) + \(\dfrac{1}{35}\) + \(\dfrac{1}{35}\))

⇔ S > \(\dfrac{5}{25}\)+\(\dfrac{5}{30}\)+\(\dfrac{5}{35}\)

⇔ S > \(\dfrac{1}{5}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{7}\)

⇔ S > \(\dfrac{107}{210}\)\(\dfrac{105}{210}\)=\(\dfrac{1}{2}\)

vậy S > \(\dfrac{1}{2}\)

 

18 tháng 9 2021

a) có tất cả số hạng là:

(20042-12):10+1=2004

tổng là:

\(\dfrac{\text{(20042+12).2004}}{2}\)\(=20094108\)

8 tháng 7 2018

42-(2x+32)+12:2=6

42-2x-32+6=6

=> 42-32-2x=0

=> 10-2x=0

=>2x=10=> x=5

cái tính tổng thì theo công thức tính tổng: số đầu+số cuối)x số số hạng:2

số số hạng:(497-2):5+1=100

tổng là: 499x100:2

8 tháng 7 2018

\(1,42-\left(2x+32\right)+12:2=6\)

\(\Rightarrow42-2x-32=0\)

\(\Rightarrow10-2x=0\)

\(\Rightarrow2x=10\Leftrightarrow x=5\)

\(2,S=2+7+12+17+...+497\)

\(\Rightarrow S=\frac{\left(497+2\right)\left[\left(497-2\right):5+1\right]}{2}\)

\(\Rightarrow S=\frac{499.100}{2}=499.50\)

\(\Rightarrow S=24950\)

25 tháng 12 2021

\(B=2+2^2+2^3+...+2^{100}\)

\(\Rightarrow2B=2^2+2^3+2^4+...+2^{101}\)

\(\Rightarrow2B-B=2^2+2^3+2^4+...+2^{101}-2-2^2-2^3-...-2^{100}\)

\(\Rightarrow2B-B=2^{101}-2\)

 

25 tháng 12 2021

bài 1

2101 - 2

12 tháng 8 2023

 a)\(...A=\dfrac{2^{50+1}-1}{2-1}=2^{51}-1\)

b) \(...\Rightarrow B=\dfrac{3^{80+1}-1}{3-1}=\dfrac{3^{81}-1}{2}\)

c) \(...\Rightarrow C+1=1+4+4^2+4^3+...+4^{49}\)

\(\Rightarrow C+1=\dfrac{4^{49+1}-1}{4-1}=\dfrac{4^{50}-1}{3}\)

\(\Rightarrow C=\dfrac{4^{50}-1}{3}-1=\dfrac{4^{50}-4}{3}=\dfrac{4\left(4^{49}-1\right)}{3}\)

Tương tự câu d,e,f bạn tự làm nhé

10 tháng 9 2017

Ta có Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Nên Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

Do đó 2S - S = Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6