Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì $\overline{36a5aa}$ chia 9 dư 5 nên:
$3+6+a+5+a+a$ chia 9$ dư $5$
$\Rightarrow 14+3\times a$ chia 9 dư 5
$\Rightarrow 14+3\times a-5\vdots 9$
$\Rightarrow 9+3\times a\vdots 9$
$\Rightarrow 3\times a\vdots 9$
$\Rightarrow a\vdots 3$
Vì $a$ là số lớn nhất và $a$ có 1 chữ số, $a\vdots 3$ nên $a=9$
1. x + 2x = -36
=> 3x = -36
=> x = -36 : 3
=> x = -12
2. (2x + 3) \(⋮\)(x - 2)
=> (2x - 2) + 5 \(⋮\)(x - 2)
=> 2(x - 2) + 5 \(⋮\)(x - 2)
=> 5 \(⋮\)(x - 2)
=> x - 2 \(\in\)Ư(5) = {-5;-1;1;5}
=> x \(\in\){-3;1;3;7}
3. Khi đó a . (-b) = -132
4. -2(3x + 2) = 12 + 22 + 32
=> -2(3x + 2) = 1 + 4 + 9
=> -2(3x + 2) = 14
=> 3x + 2 = 14 : (-2)
=> 3x+ 2 = -7
=> 3x = -7 - 2
=> 3x = -9
=> x = -9 : 3
=> x = -3
1/ \(x+2x=-36\)
\(\Rightarrow3x=-36\)
\(\Rightarrow x=-\frac{36}{3}\)
\(\Rightarrow x=-12\)
2/ \(\left(2x+3\right)⋮\left(x-2\right)\)
\(\Leftrightarrow\left(2x-4\right)+7⋮\left(x-2\right)\)
\(\Leftrightarrow2\left(x-2\right)+7⋮\left(x-2\right)\)
\(\Rightarrow7⋮\left(x-2\right)\)
\(\Rightarrow\left(x-2\right)\inƯ\left(7\right)\)
\(\Rightarrow x\inƯ\left(7-2\right)\)
\(\Rightarrow x\inƯ\left(5\right)\)
\(\Rightarrow x\in\left\{-5,1,5\right\}\)
Vậy x nhỏ nhất để \(\left(2x-3\right)⋮\left(x-2\right)\) là -5
3/ Vì \(a\cdot b=32\)
\(\Rightarrow-a\cdot b=-\left(a\cdot b\right)=-32\)
4/ \(-2\left(3x+2\right)=1^2+2^2+3^2\)
\(\Leftrightarrow-6x-4=1+4+9\)
\(\Leftrightarrow-6x=14+4\)
\(\Leftrightarrow-6x=18\)
\(\Leftrightarrow x=\frac{18}{-6}\)
\(\Rightarrow x=3\)
Ta có:
a. bcd . abc = abcabc
=> abcabc = abc . (1000 + 1) = abc . 1001
<=> a . bcd . abc = abc . 1001
<=> a . bcd = 1001
Đây là tích giữa số có 1 chữ số và số có 3 chữ số nên ta dễ dàng tìm được a = 7 ( vì từ 1 -> 9 chỉ có 1001 mới chia hết cho 7) từ đó suy ra bcd = 143
Kết luận a = 7 ; b = 1 ; c = 4 ; d = 3 hay abcd = 7143
\(ab-ac+bc-c^2=-1\)
<=> \(a\left(b-c\right)+c\left(b-c\right)=-1\)
<=> \(\left(a+c\right)\left(b-c\right)=-1\)
Mà \(a,b,c\in Z\Rightarrow\left\{{}\begin{matrix}a+c\in Z\\b-c\in Z\end{matrix}\right.\)
- Nếu \(\left\{{}\begin{matrix}a+c=1\\b-c=-1\end{matrix}\right.\) => a + b = 0
- Nếu \(\left\{{}\begin{matrix}a+c=-1\\b-c=1\end{matrix}\right.\) => a + b = 0
Vậy M = 0
a = 1 ; b = 2
ủng hộ mk nha
a = 1
b = 2
ủng hộ mk nha