Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
2a^2+6a=2a(a+3) khác 0=> a khác 0 và a khác -3
a^2-9=(a-3)(a+3) khác 0=> a khác -3 và a khác 3
tỏng hợp a \(\ne\) {-3,0,3}
b)\(B=\frac{\left(a+3\right)^2}{2a\left(a+3\right)}\cdot\frac{\left(a^2-9\right)-6a+18}{\left(a-3\right)\left(a+3\right)}=\frac{\left(a+3\right)^2.\left(a-3\right)^2}{2a.\left(a-3\right)\left(a+3\right)^2}=\frac{a-3}{2a}\)
c)B=0\(\frac{\left(a-3\right)}{2a}=0=>a=3\Rightarrow\left(loai\right)\) kết luận ko có giá trị nào a ;B =0
d)\(B=1\Rightarrow\left(a-3\right)=2a\Rightarrow a=-3\left(loai\right)\)không có giá trị nào của a cho B=1
\(B=\dfrac{\left(a+3\right)^2}{2a^2+6a}\cdot\dfrac{1-6a-18}{a^2-9}\\ a,ĐK:a\ne0;a\ne\pm3\\ b,B=\dfrac{\left(a+3\right)^2}{2a\left(a+3\right)}\cdot\dfrac{-17-6a}{\left(a-3\right)\left(a+3\right)}=\dfrac{-17-6a}{2a\left(a-3\right)}\\ c,B=0\Leftrightarrow-17-6a=0\Leftrightarrow a=-\dfrac{17}{6}\left(tm\right)\\ d,B=1\Leftrightarrow-17-6a=2a^2-6a\\ \Leftrightarrow2a^2=-17\Leftrightarrow a\in\varnothing\)
a) B = \(\frac{\left(a+3\right)^2}{2a^2+6a}\). \(\left(1-\frac{6a-18}{a^2-9}\right)\)
= \(\frac{\left(a+3\right)^2}{2a\left(a+3\right)}\). \(\left(1-\frac{6\left(a-3\right)}{\left(a-3\right)\left(a+3\right)}\right)\)
= \(\frac{a+3}{2a}\). \(\left(1-\frac{6}{a+3}\right)\)
= \(\frac{a+3}{2a}\). \(\frac{a+3-6}{a+3}\)
= \(\frac{a+3}{2a}\). \(\frac{a-3}{a+3}\)
= \(\frac{a-3}{2a}\)
b) B = \(\frac{a-3}{2a}\)= 1
\(\Leftrightarrow\)\(a-3=2a\)
\(\Leftrightarrow\)\(a=-3\)
Vậy khi B = 1 thì a = -3
a) \(ĐKXĐ:\hept{\begin{cases}a\ne-3\\a\ne\pm2\end{cases}}\)
\(M=\frac{2a-a^2}{a+3}\left(\frac{a-2}{a+2}-\frac{a+2}{a-2}+\frac{4a^2}{4-a^2}\right)\)
\(\Leftrightarrow M=\frac{a\left(2-a\right)}{a+3}\cdot\frac{\left(a-2\right)^2-\left(a+2\right)^2-4a^2}{\left(a-2\right)\left(a+2\right)}\)
\(\Leftrightarrow M=\frac{a\left(2-a\right)}{a+3}\cdot\frac{a^2-4a+4-a^2-4a-4-4a^2}{\left(a-2\right)\left(a+2\right)}\)
\(\Leftrightarrow M=\frac{a\left(2-a\right)}{a+3}\cdot\frac{-4a^2-8a}{\left(a-2\right)\left(a+2\right)}\)
\(\Leftrightarrow M=\frac{a\left(2-a\right)}{a+3}\cdot\frac{-4a\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}\)
\(\Leftrightarrow M=\frac{a\left(2-a\right)}{a+3}\cdot\frac{-4a}{a-2}\)
\(\Leftrightarrow M=\frac{4a^2\left(a-2\right)}{\left(a+3\right)\left(a-2\right)}\)
\(\Leftrightarrow M=\frac{4a^2}{a+3}\)
b) Để M = 1
\(\Leftrightarrow\frac{4a^2}{a+3}=1\)
\(\Leftrightarrow4a^2=a+3\)
\(\Leftrightarrow4a^2-a-3=0\)
\(\Leftrightarrow\left(4a+3\right)\left(a-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4a+3=0\\a-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=-\frac{3}{4}\left(tm\right)\\a=1\left(tm\right)\end{cases}}\)
Vậy để \(M=1\Leftrightarrow a\in\left\{-\frac{3}{4};1\right\}\)
c) Để M > 0
\(\Leftrightarrow\frac{4a^2}{a+3}>0\)
\(\Leftrightarrow a+3>0\)(Vì 4a2 > 0, loại trường hợp = 0)
\(\Leftrightarrow a>-3\)
Vậy để \(M>0\Leftrightarrow a>-3\)
Để M < 0
\(\Leftrightarrow\frac{4a^2}{a+3}< 0\)
\(\Leftrightarrow a+3< 0\)(Vì 4a2 > 0, loại trường hợp = 0)
\(\Leftrightarrow a< -3\)
Vậy để \(M< 0\Leftrightarrow a< -3\)
a) B xác định
\(\Leftrightarrow\begin{cases}2a^2+6a\ne0\\a^2-9\ne0\end{cases}\Leftrightarrow\begin{cases}2a\left(a+3\right)\ne0\\\left(a+3\right)\left(a-3\right)\ne0\end{cases}\Leftrightarrow\begin{cases}a\ne0\\a\ne-3\\a\ne3\end{cases}\)
Vậy để B xác định thì \(a\ne0\) và \(a\ne\pm3\)
b) \(B=\frac{\left(a+3\right)^2}{2a^2+6a}\cdot\left(1-\frac{6a-18}{a^2-9}\right)\)
\(=\frac{\left(a+3\right)^2}{2a\left(a+3\right)}\cdot\frac{\left(a+3\right)\left(a-9\right)}{\left(a+3\right)\left(a-3\right)}\)
\(=\frac{a+3}{2a}\cdot\frac{a-9}{a+3}\)
\(=\frac{a-9}{2a}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}2a^2+6a\ne0\\a^2-9\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2a\left(a+3\right)\ne0\\\left(a-3\right)\left(a+3\right)\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2a\ne0\\a-3\ne0\\a+3\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a\ne0\\a\ne3\\a\ne-3\end{matrix}\right.\)
b) \(B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\left(1-\dfrac{6a-18}{a^2-9}\right)\)
\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\left(\dfrac{a^2-9}{a^2-9}-\dfrac{6a-18}{a^2-9}\right)\)
\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\dfrac{\left(a^2-9\right)-\left(6a-18\right)}{a^2-9}\)
\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\dfrac{a^2-9-6a+18}{a^2-9}\)
\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\dfrac{a^2-6a+9}{a^2-9}\)
\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a^2+6a}.\dfrac{\left(a-3\right)^2}{a^2-9}\)
\(\Leftrightarrow B=\dfrac{\left(a+3\right)^2}{2a\left(a+3\right)}.\dfrac{\left(a-3\right)^2}{\left(a-3\right)\left(a+3\right)}\)
\(\Leftrightarrow B=\dfrac{a+3}{2a}.\dfrac{a-3}{a+3}\)
\(\Leftrightarrow B=\dfrac{\left(a+3\right)\left(a-3\right)}{2a\left(a+3\right)}\)
\(\Leftrightarrow B=\dfrac{a-3}{2a}\)
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne-3\\x\ne3\end{cases}}\)
\(A=\left(\frac{1}{3}+\frac{3}{x^2-3x}\right):\left(\frac{x^2}{27-3x^2}+\frac{1}{x+3}\right)\)\(=\left[\frac{1}{3}+\frac{3}{x\left(x-3\right)}\right]:\left(\frac{-x^2}{3x^2-27}+\frac{1}{x+3}\right)\)
\(=\left[\frac{x\left(x-3\right)}{3x\left(x-3\right)}+\frac{9}{3x\left(x-3\right)}\right]:\left[\frac{-x^2}{3\left(x^2-9\right)}+\frac{1}{x+3}\right]\)
\(=\frac{x^2-3x+9}{3x\left(x-3\right)}:[\frac{-x^2}{3\left(x-3\right)\left(x+3\right)}+\frac{3\left(x-3\right)}{3\left(x-3\right)\left(x+3\right)}]\)
\(=\frac{x^2-3x+9}{3x\left(x-3\right)}:\frac{-x^2+3x-9}{3\left(x-3\right)\left(x+3\right)}\)\(=\frac{x^2-3x+9}{3x\left(x-3\right)}.\frac{3\left(x-3\right)\left(x+3\right)}{-\left(x^2-3x+9\right)}=\frac{x+3}{-x}=\frac{-x-3}{x}=-1-\frac{3}{x}\)
b) \(A< -1\)\(\Leftrightarrow-1-\frac{3}{x}< -1\)\(\Leftrightarrow\frac{-3}{x}< 0\)
mà \(-3< 0\)\(\Rightarrow x>0\)và \(x\ne3\)
Vậy \(A< -1\Leftrightarrow\hept{\begin{cases}x>0\\x\ne3\end{cases}}\)
c) Vì \(-1\inℤ\)\(\Rightarrow\)Để A nguyên thì \(\frac{3}{x}\inℤ\)\(\Rightarrow3⋮x\)
\(\Rightarrow x\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
So sánh với ĐKXĐ \(\Rightarrow x=\pm3\)loại
Vậy A nguyên \(\Leftrightarrow x=\pm1\)