K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2020

a/ ĐKXĐ : \(\left\{{}\begin{matrix}z\ne0\\z\ne4,-4\end{matrix}\right.\)

Thay \(z=1\) vào biểu thức A ta có :

\(A=\frac{2.1}{1^2-4}=\frac{2}{-3}=-\frac{2}{3}\)

Vậy....

b/ Ta có :

\(B=\frac{2z^3+4z}{z^4-8z^2+16}\)

\(=\frac{2z\left(z+2\right)}{\left(z^2-4\right)^2}\)

\(=\frac{2z\left(z+2\right)}{\left(z-2\right)^2\left(z+2\right)^2}\)

\(=\frac{2z}{\left(z-2\right)^2\left(z+2\right)}\)

Lại có : \(M=A:B\)

\(\Leftrightarrow M=\frac{2z}{\left(z-2\right)\left(z+2\right)}:\frac{2z}{\left(z-2\right)^2\left(z+2\right)}\)

\(=\frac{2z}{\left(z-2\right)\left(z+2\right)}.\frac{\left(z-2\right)^2\left(z+2\right)}{2z}\)

\(=z-2\)

Vậy...

19 tháng 7 2019
https://i.imgur.com/n80RLt3.jpg
19 tháng 7 2019

Bạn tham khảo tạm nhé! Chúc bạn học tốt!

13 tháng 1 2019

\(a,M=1:\left(\frac{x^2+2}{x^3-1}+\frac{x+1}{x^2+x+1}-\frac{1}{x-1}\right)\)

\(=1:\left[\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x+1}{x^2+x+1}+\frac{-1}{x-1}\right]\)

\(=1:\left[\frac{\left(x^2+2\right)+\left(x+1\right)\left(x-1\right)+\left(-1\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)

\(=1:\left[\frac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)

\(=1:\left[\frac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}\right]=1:\left[\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]\)

\(=1:\frac{x}{x^2+x+1}=\frac{x^2+x+1}{x}\)

13 tháng 1 2019

Giải các câu khác giúp mình với 

7 tháng 8 2020

a) \(\frac{2z-4}{z^2-4}=\frac{2\left(z-2\right)}{z^2-2^2}=\frac{2\left(z-2\right)}{\left(z-2\right)\left(z+2\right)}=\frac{2}{z+2}\)

b) \(\frac{2z+10}{50-2z^2}=\frac{2\left(z+5\right)}{2\left(25-z^2\right)}=\frac{2\left(5+z\right)}{2\left(5-z\right)\left(5+z\right)}=\frac{1}{5-z}\)

c) \(\frac{2z^2-8}{z^3-8}=\frac{2\left(z^2-4\right)}{z^3-2^3}=\frac{2\left(z^2-2^2\right)}{\left(z-2\right)\left(z^2+2z+2^2\right)}=\frac{2\left(z-2\right)\left(z+2\right)}{\left(z-2\right)\left(z^2+2z+4\right)}=\frac{2\left(z+2\right)}{z^2+2z+4}=\frac{2\left(z+2\right)}{z^2+2\left(z+2\right)}=\frac{1}{z^2}\)

10 tháng 3 2020

2/a/\(\Leftrightarrow9x^2-18x+9+y^2-6y+9+2z^2+4z+2=0\)

\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\).Từ đó suy ra

\(\left\{{}\begin{matrix}x-1=0\\y-3=0\\z+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

b/\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow ayz+bzx+cxy=0\)

Ta có \(\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ac}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2.\frac{ayz+bzx+cxy}{abc}=1\)

\(\RightarrowĐPCM\)

1/Mạn phép sửa đề :\(\left\{{}\begin{matrix}3x^2+y^2+2x-2y-1=0\left(1\right)\\2x\left(x+y\right)=2\left(2\right)\end{matrix}\right.\)

Cộng (1) và (2) đc \(x^2-2xy+y^2+2x-2y-1=-2\)

\(\Leftrightarrow\left(x-y\right)^2+2\left(x-y\right)+1=0\)

\(\Leftrightarrow\left(x-y+1\right)^2=0\)

Suy ra x-y=-1.Thế ngược lại vào 2 tìm đc x,y

.Nếu mà bạn giữ nguyên đề như vậy thì

Giải phương trình để tìm x bằng cách tìm a, b, và c

của phương trình bậc hai sau đó áp dụng công thức phương trình bậc hai. x=−1−√−3y2+6y+43 Lớp 9 x=−1+√−3y2+6y+43
29 tháng 1 2017

P.An hở

14 tháng 2 2018

ko biết

14 tháng 2 2018

ko bt thi cam

`#3107`

`a)`

`A=`\(3x^4 + \dfrac{1}3xyz - 3x^4 - \dfrac{4}3xyz + 2x^2y - 6z\)

`= (3x^4 - 3x^4) + (1/3xyz - 4/3xyz) + 2x^2y - 6z`

`= -xyz + 2x^2y - 6z`

Thay `x = 1; y = 3` và `z = 1/3` vào A

`A = -1*3*1/3 + 2*1^2*3 - 6*1/3`

`= -1 + 6 - 2`

`= 6 - 3`

`= 3`

Vậy, `A=3`

`b)`

`B=`\(4x^3 - \dfrac{2}7xyz - 4x^3 - \dfrac{4}3xyz + 4x^2y\)

`= (4x^3 - 4x^3) + (-2/7xyz - 4/3xyz) + 4x^2y`

`= -34/21 xyz + 4x^2y`

Thay `x = -1; y = 2` và `z = -1/2` vào B

`B = -34/21*(-1)*2*(-1/2) + 4*(-1)^2 * 2`

`= -34/21 + 8`

`= 134/21`

Vậy, `B = 134/21`

`c)`

`C=`\(4x^2 + \dfrac{1}2xyz - \dfrac{2}3xy^2z - 5x^2yz + \dfrac{3}4xyz\)

`= 4x^2 + (1/2xyz + 3/4xyz) - 2/3xy^2z - 5x^2yz `

`= 4x^2 + 5/4xyz - 2/3xy^2z - 5x^2yz`

Ta có:

`|y| = 2`

`=> y = +-2`

Thay `x = -1; y = 2` và `z = 1/2` vào C

`4*(-1)^2 + 5/4*(-1)*2*1/2 - 2/3*(-1)*2^2*1/2 - 5*(-1)^2*2*1/2`

`= 4 - 5/4 + 4/3 - 5`

`= -11/12`

Vậy, với `x = -1; y = 2; z = 1/2` thì `B = -11/12`

Thay `x = -1; y = -2; z = 1/2`

`B = 4*(-1)^2 + 5/4*(-1)*(-2)*1/2 - 2/3*(-1)*(-2)^2*1/2 - 5*(-1)^2*(-2)*1/2`

`= 4 + 5/4 + 4/3 + 5`

`= 139/12`

Vậy, với `x = -1; y = -2; z = 1/2` thì `B = 139/12.`