Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ :vẽ thêm tia Nx // Tz
Có xNT= NTz (2 góc so le trong) mà NTz=90 độ (GT)
Suy ra xNT=90 độ
Có xNM+xNT=120 độ
Thay số : xNM+90=120
Suy ra xNM+30 độ
Có xNM+NMu=180 độ( vì 30+150 = 180 )
xNM và NMu ở vị trí trong cùng phía nên Mu // Nx
Có Mu//Nx ( Chứng minh trên) điều 1
Nx // Tz ( Vẽ thêm) điều 2
Từ 1 vaf2 suy ra Mu//Tz
Câu 6.6 trang 19 Sách Bài Tập SBT Toán lớp 7 tập 1
Tính M=820+420425+645M=820+420425+645.
Giải
M=820+420425+645=(23)20+(22)20(22)25+(26)5M=820+420425+645=(23)20+(22)20(22)25+(26)5
=260+240250+230=240(220+1)230(220+1)=210=1024.=260+240250+230=240(220+1)230(220+1)=210=1024.
Câu 6.7 trang 19 Sách Bài Tập SBT Toán lớp 7 tập 1
Tìm x, biết:
a) (x4)2=x12x5(x≠0);(x4)2=x12x5(x≠0);
b) x10 = 25x8.
Giải
a) (x4)2=x12x5(x≠0)⇒x8=x7(x4)2=x12x5(x≠0)⇒x8=x7
⇒x8−x7=0⇒x7.(x−1)=0⇒x8−x7=0⇒x7.(x−1)=0
⇒x−1=0⇒x−1=0 (vì x7 ≠ 0)
Vậy x = 1.
b) x10=25x8⇒x10−25x8=0⇒x8.(x2−25)=0x10=25x8⇒x10−25x8=0⇒x8.(x2−25)=0
Suy ra x8 = 0 hoặc x2 - 25 = 0.
Do đó x = 0 hoặc x = 5 hoặc x = -5.
Vậy x∈{0;5;−5}x∈{0;5;−5}.
Câu 6.8 trang 19 Sách Bài Tập SBT Toán lớp 7 tập 1
Tìm x, biết:
a) (2x+3)2=9121(2x+3)2=9121;
b) (3x−1)3=−827(3x−1)3=−827
Giải
a) (2x+3)2=9121=(±311)2(2x+3)2=9121=(±311)2
Nếu 2x+3=311⇒x=−15112x+3=311⇒x=−1511
Nếu 2x+3=−311⇒x=−18112x+3=−311⇒x=−1811
b) (3x−1)3=−827=(−23)3(3x−1)3=−827=(−23)3
⇔3x−1=−23⇔x=19
Giải:
∆AHB và ∆KBH có
AH=KH ( gt )
=
BH cạnh chung .
Nên ∆AHB=∆KBH(c.g.c)
Suy ra: =
Vậy BH là tia phân giác của góc B.
Tương tự ∆AHC =∆KHC ( c . g . c )
Suy ra: =
Vậy CH là tia phân giác của góc C
p/s: Very làm biếng open sách so copy mạng =]]]
Bai 1: Cho tam giac ABC vuong tai A. Tia phan giac cua goc B cat AC o D. Ke DE vuong goc voi BC .CMR: AB bang BE
Bai 2: Cho tam giac ABC, D la trung diem cua AB. Duong thang qua D va song2 voi BC cat AC o E, duong thang qua E va song2 voi AB cat BC o F.CMR:
a, AD bang EF
b, \(\Delta ADE=\Delta EFC\)
c,\(AE=EC\)
Bai 3:* Cho tam giac ABC ,D la trung diem cua AB ,E la trung diem cua AC .Ve diem F : E la trung diem cua DF.CMR:
a,\(DB=CF\)
b,\(\Delta BDC=\Delta FCD\)
c,\(DE//BC,DE=\frac{1}{2}BC\)
HTDT
Sử dụng tính chất : nếu a , b , c \(\in\) Z và a < b thì a + c < b - c . Từ đó
=> \(\frac{a}{m}< \frac{a+b}{2m}\) ( chia 2 vế cho m > 0 )
Vậy x < z ( 1 )
- Ta chứng minh z < y hay \(\frac{a+b}{2m}< \frac{b}{m}\)
Ta có : am < bm => am + bm < bm + bm ( cộng hai vế với bm )
=> ( a + b )m < 2bm
=> a + b < 2b ( chia 2 vế cho m )
=> \(\frac{a+b}{2m}< \frac{2b}{2m}=\frac{b}{m}\) ( chia 2 vế cho 2m )
Hay z < y ( 2 )
Từ ( 1 ) và ( 2 ) => x < z < y
* Nhận xét : từ kết quả trên ta rút ra kết luận : trên trục số , giữa 2 điểm hữu tỉ khác nhau bất kì bao giờ cũng có ít nhất một điểm hữu tỉ nữa và do đó có vô số điểm hữu tỉ . Ta bảo tập hợp Q là tập trù mật.