K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2021

\(2.8\)

Gọi 3 số tự nhiên lt là \(a-1;a;a+1\) \(\left(a\in N\text{*}\right)\)

Theo đề, có 

\(a\left(a-1\right)+a\left(a+1\right)+\left(a-1\right)\left(a+1\right)=299\\ \Leftrightarrow a^2-a+a^2+a+a^2-1=299\\ \Leftrightarrow3a^2=300\\ \Leftrightarrow a^2=100\Leftrightarrow a=10\left(a\in N\text{*}\right)\)

Vậy 3 số đó là 99;100;101

21 tháng 9 2021

\(2.1\\ a,A=x^3-2x^2+4x^2-8x-2x+4-x^3-x\\ A=2x^2-11x+4\\ b,x=-2\\ \Leftrightarrow A=2\cdot4+22+4=34\\ c,A=4\Leftrightarrow2x^2-11x+4=4\\ \Leftrightarrow x\left(2x-11\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{11}{2}\end{matrix}\right.\\ d,A>-21\\ \Leftrightarrow2x^2-11x+4+21>0\\ \Leftrightarrow2x^2-11x+25>0\\ \Leftrightarrow2\left(x^2-2\cdot\dfrac{11}{4}x+\dfrac{121}{16}-\dfrac{121}{16}+25\right)>0\\ \Leftrightarrow2\left(x-\dfrac{11}{4}\right)^2+\dfrac{279}{8}>0\left(luôn.đúng\right)\\ \Leftrightarrow x\in R\)

27 tháng 2 2020

Ta có:

\(S_{ABC}=S_{AOB}+S_{AOC}+S_{BOC}\)

\(=\frac{OH\cdot AB}{2}+\frac{OK\cdot AC}{2}+\frac{OI\cdot AC}{2}\)

\(=\frac{AB\left(OH+OK+KI\right)}{2}\)

\(\Rightarrow OH+OK+KI=\frac{2S_{ABC}}{AB}\) không đổi

9 tháng 7 2018

\(\left(X^2+2x+1\right)+\left(4y^2+\frac{4.1y}{4}+\frac{1}{16}\right)+2-\frac{1}{16}.\)

\(\left(x+1\right)^2+\left(2y+\frac{1}{4}\right)^2+\frac{15}{16}\ge\frac{15}{16}\)

9 tháng 7 2018

\(x^2+4y^2+2x-y+2\)

\(=\left(x^2+2x+1\right)+\left[\left(2y\right)^2-2.2y.\frac{1}{4}+\left(\frac{1}{4}\right)^2\right]+\frac{15}{16}\)

\(=\left(x+1\right)^2+\left(2y-\frac{1}{4}\right)+\frac{15}{16}\)

Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(2y-\frac{1}{4}\right)\ge0\forall y\end{cases}\Rightarrow\left(x+1\right)^2+\left(2y-\frac{1}{4}\right)+\frac{15}{16}\ge\frac{15}{16}}\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(2y-\frac{1}{4}\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\2y-\frac{1}{4}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=\frac{1}{8}\end{cases}}}\)

Vậy GTNN của \(x^2+4y^2+2x-y+2=\frac{15}{16}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{1}{8}\end{cases}}\)

Tham khảo nhé~

11 tháng 9 2019

\(\left(-3x-2\right)^2+\left(3x+5\right)\left(5-3x\right)=-7\)

\(\Leftrightarrow9x^2+12x+4+15x-9x^2+25-15x=-7\)

\(\Leftrightarrow12x+36=0\Leftrightarrow x=-3\)

11 tháng 9 2019

\(\left(x+2\right)\left(x^2+2x+2\right)-x\left(x-8\right)^2=\left(4x-3\right)\left(4x+3\right)\)

\(\Leftrightarrow x^3+2x^2+2x+2x^2+4x+4-x\left(x^2-16x+64\right)=16x^2-9\)

\(\Leftrightarrow x^3+4x^2+6x+4-x^3+16x^2-64=16x^2-9\)

\(\Leftrightarrow4x^2+6x-51=0\)

\(\cdot\Delta=6^2-4.4.\left(-51\right)=852\)

Vậy pt có 2 nghiệm phân biệt

\(x_1=\frac{-6+\sqrt{852}}{8}\);\(x_2=\frac{-6-\sqrt{852}}{8}\)

19 tháng 7 2017

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3abc-3a^2b-3ab^2=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\) (luôn đúng vì \(a+b+c=0\))

Vậy \(a^3+b^3+c^3=3abc\)

17 tháng 10 2016

A= 2006 X 2008 - 20072

A = 2006 . 2008 - 2007 . 2007

A = 2006 . ( 2007 + 1 ) - 2007 . ( 2006 + 1 )

A = 2006 . 2007 + 2006 - 2007 . 2006 + 2007

A = -1

B= 2016 X 2018 - 20172

B= 2016 . 2018 - 2017 . 2017

B = 2016 . ( 2017 + 1 ) - 2017 . ( 2016 + 1 )

B = 2016 . 2017 + 2016 - 2017 . 2016 + 2017

B = -1

17 tháng 10 2016

cảm ơn bạn nhé....