K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2015

tick mk cái sau mk trả lời cho mk bít làm bài này

 

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\frac{2a+b+c}{a}=\frac{2b+c+a}{b}=\frac{2c+a+b}{c}=\frac{2a+b+c+2b+c+a+2c+a+b}{a+b+c}=\frac{4\left(a+b+c\right)}{a+b+c}=4\)

\(\Rightarrow\frac{2a+b+c}{a}=4\Rightarrow2a+b+c=4a\Rightarrow b+c=4a-2a=2a\)

          \(\frac{2b+c+a}{b}=4\Rightarrow2b+c+a=4b\Rightarrow c+a=4b-2b=2b\)

          \(\frac{2c+a+b}{c}=4\Rightarrow2c+a+b=4c\Rightarrow a+b=4c-2c=2c\)   

Suy ra \(P=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2a.2b}{abc}=\frac{8abc}{abc}=8\)

Vậy P=8

27 tháng 8 2016

Thay a = -1 , b=1 vào biểu thức A 

=> A = 5.(-1)^3.1^8 = - 5

Thay a = -1 , b= 2 vào biểu thức B

=>B = -9.(-1)^4 . 2^2 = - 36

Ta có : 

C = ax + ay + bx + by = a(x+y) + b(x+y) = (x+y)(a+b)

Thay a+b = - 3 , x+y = 17 vào biểu thức C

C = ( -3)(17) = -51

12 tháng 11 2016

Giải:

Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\)

\(\Rightarrow a=2k,b=3k,c=4k\)

Ta có: \(\frac{a^2+b^2+2c^2}{a^2-4b^2+c^2}\)

\(=\frac{\left(2k\right)^2+\left(3k\right)^2+2\left(4k\right)^2}{\left(2k\right)^2-4\left(3k\right)^2+\left(4k\right)^2}\)

\(=\frac{2^2.k^2+3^2.k^2+2.4^2.k^2}{2^2.k^2-4.3^2.k^2+4^2.k^2}\)

\(=\frac{4.k^2+9.k^2+32.k^2}{4.k^2-36.k^2+16.k^2}\)

\(=\frac{k^2.\left(4+9+32\right)}{k^2.\left(4-36+16\right)}\)

\(=\frac{45}{-16}\)

 

12 tháng 11 2016

\(A=\frac{a^2+b^2+2c^2}{a^2-4b^2+c^2}\)

Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=k\Rightarrow a=2k;b=3k;c=4k\)

Suy ra \(A=\frac{\left(2k\right)^2+\left(3k\right)^2+2\left(4k\right)^2}{\left(2k\right)^2-4\left(3k\right)^2+\left(4k\right)^2}=\frac{4k^2+9k^2+2\cdot16k^2}{4k^2-4\cdot9k^2+16k^2}\)

\(=\frac{k^2\left(4+9+32\right)}{k^2\left(4-36+16\right)}=\frac{45}{-16}=-\frac{45}{16}\)

14 tháng 12 2017

Đặt a/2 = b/5 = c/7 => a=2k,b=5k,c=7k

Ta có: \(A=\frac{a-b+c}{a+2b-c}=\frac{2k-5k+7k}{2k+2.5k-7k}=\frac{4k}{5k}=\frac{4}{5}\)

30 tháng 8 2017

a) Theo đề ta có :

\(A=\frac{3a-2b}{a-3b}\) với \(\frac{a}{b}=\frac{10}{3}\)

\(\frac{a}{b}=\frac{10}{3}\) \(\Rightarrow a=\frac{10}{3}.b\)

Thay a = \(\frac{10b}{3}\) vào \(\frac{3a-2b}{a-3b}\)

\(\Rightarrow\frac{3a-2b}{a-3b}=\frac{3.\frac{10b}{3}-2b}{\frac{10b}{3}-3b}\) \(=\frac{10b-2b}{\frac{10b}{3}-\frac{9b}{3}}=\frac{8b}{\frac{b}{3}}=8b:\frac{b}{3}=8b.\frac{3}{b}=8.3=24\)

b) Theo đề ta có :

a - b = 3 => a = b + 3 

Thay a = b+3 vào \(B=\frac{a-8}{a-5}-\frac{4a-b}{3a+3}\)

\(\Rightarrow B=\frac{b+3-8}{b+3-5}-\frac{4.\left(b+3\right)-b}{3.\left(b+3\right)+3}\) \(=\frac{b-5}{b-2}-\frac{4b+12-b}{3b+9+3}=\frac{b-2-3}{b-2}-\frac{3b+12}{3b+12}\)

\(=\frac{b-2}{b-2}-\frac{3}{b-2}-1\) \(=1-\frac{3}{b-2}-1=0-\frac{3}{b-2}=-\frac{3}{b-2}\)

k đi!!!

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{3a+2b}{a}=\dfrac{3bk+2b}{bk}=\dfrac{3k+2}{k}\)

\(\dfrac{3c+2d}{c}=\dfrac{3dk+2d}{dk}=\dfrac{3k+2}{k}\)

Do đó: \(\dfrac{3a+2b}{a}=\dfrac{3c+2d}{c}\)

b: \(\dfrac{2a-3b}{b}=\dfrac{2bk-3b}{b}=2k-3\)

\(\dfrac{2c-3d}{d}=\dfrac{2dk-3d}{d}=2k-3\)

Do đó: \(\dfrac{2a-3b}{b}=\dfrac{2c-3d}{d}\)

c: \(\dfrac{a}{a-2b}=\dfrac{bk}{bk-2b}=\dfrac{k}{k-2}\)

\(\dfrac{c}{c-2d}=\dfrac{dk}{dk-2d}=\dfrac{k}{k-2}\)

Do đó: \(\dfrac{a}{a-2b}=\dfrac{c}{c-2d}\)

27 tháng 8 2023

thank you