Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
góc BAD=90 độ
=>ABCD là hình chữ nhật
b: Xét tứ giác EDBC có
ED//BC
ED=BC
=>EDBC là hình bình hành
=>Eb cắt CD tại trung điểm của mỗi đường
=>ID=IB
a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Hình bình hành ABCD có \(\widehat{BAD}=90^0\)
nên ABCD là hình chữ nhật
b: ABCD là hình chữ nhật
=>AD//BC và AD=BC
AD//BC
D\(\in\)AE
Do đó: ED//BC
AD=BC
ED=DA
Do đó: BC=ED
Xét tứ giác EDBC có
ED//BC
ED=BC
Do đó: EDBC là hình bình hành
=>EB cắt DC tại trung điểm của mỗi đường
mà I là trung điểm của DC
nên I là trung điểm của EB
=>IE=IB
c: Xét ΔACK có
H,M lần lượt là trung điểm của AK,AC
=>HM là đường trung bình của ΔACK
=>HM//CK
=>CK//DB
Xét ΔDAK có
DH là đường cao
DH là đường trung tuyến
Do đó:ΔDAK cân tại D
=>DA=DK
mà DA=BC(ABCD là hình chữ nhật)
nên DK=BC
Xét tứ giác BKCD có CK//BD
nên BKCD là hình thang
Hình thang BKCD có CB=DK
nên BKCD là hình thang cân
a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Hình bình hành ABCD có \(\widehat{BAD}=90^0\)
nên ABCD là hình chữ nhật
b: ABCD là hình chữ nhật
=>AD//BC và AD=BC
AD=BC
AD=DE
Do đó: DE=CB
Xét tứ giác EDBC có
ED//BC
ED=BC
Do đó: EDBC là hình bình hành
=>EB cắt DC tại trung điểm của mỗi đường
=>I là trung điểm của EB
=>IE=IB
c: Xét ΔACK có
H,M lần lượt là trung điểm của AK,AC
=>HM là đường trung bình
=>HM//CK
=>CK//BD
Xét ΔDAK có
DH là đường cao, là đường trung tuyến
Do đó: ΔDAK cân tại D
=>DA=DK
mà DA=BC
nên DK=BC
Xét tứ giác BKCD có CK//BD
nên BKCD là hình thang
mà BC=KD
nên BKCD là hình thang cân
a: Xét tứ giác AHKC có
I là trung điểm chung của AK và HC
=>AHKC là hình bình hành
=>AC//HK
b: AC//HK
AC//HM
HK cắt HM tại H
=>H,M,K thẳng hàng
=>NC//MK
AHKC là hình bình hành
=>góc CKH=góc CAH
mà góc CAH=góc NMH(AMHN là hình chữ nhật)
nên góc CKM=góc NMK
=>CNMK là hình thang cân
c: AMHN là hình chữ nhật
=>O là trung điểm chung của AH và MN
Xét ΔCAH có
CO,AI là trung tuyến
CO cắt AI tại D
=>D là trọng tâm
=>AD=2/3AI=2/3*1/2*AK=1/3AK
=>AK=3AD
gọi L là giao điểm của BD và AC.
Có: BL=LD, AL=LC => ABCD là hình bình hành.
Lại có ^A=90 => ABCD là HCN (ĐPCM)
b/ xét tam giác BCI và IED có:
BC=DE(.....)
^BCI = ^IDE=90 độ
CI = ID (.....)
=> tg BCI = tg IDE (c,g,c)
=> BI = IE (ĐPCM)
a/ \(\widehat{DCE}+\widehat{ECF}=180^o\)
=> \(\widehat{ECF}=90^o\)
Xét t/g DEC và t/g BFC có
EC = FC (GT)
\(\widehat{DCE}=\widehat{BCF}=90^o\)
DC = BC (do ABCD là hình vuông)
=> t/g DEC = t/g BFC (c.g.c)
=> DE = BF (2 cạnh t/ứ(
b/ Xét t/g BEH và t/g DEC có
\(\widehat{BEH}=\widehat{DEC}\) (đối đỉnh)
\(\widehat{EBF}=\widehat{EDC}\) (do t/g BFC = t/g DEC)
\(\Rightarrow\Delta BEH\sim\Delta DEC\) (g.g)
=> \(\widehat{BHE}=\widehat{DCB}=90^o\)
=> \(DE\perp BF\)
Xét t/g BDF có
DE ⊥ BF
BC ⊥ DF
DE cắt BC tại E
=> E là trực tâm t/g BDF
=> .... đpcm
c/ Xét t/g CEF có CE = CF ; M là trung điểm EF
=> CM ⊥ EF
=> \(\widehat{KMC}=90^o\)
Tự cm OKMC làhcn
=> OC = KM => AO = KM
Mà AO // KM (cùng vuông góc vs BD)
=> AOMK là hbh
=> OM // AK
B1.
a. Có AB=BD(gt)
=>tam giác ABD cân
mà BH là đường cao (BH vuông vs AD)
=>BH là trung tuyến(đl)
=>AH=HD
b. Tương tự câu a. CM k là trung điểm AE
=>HK là đường trung bình của tam giác ADE
=>HK//BC và = 1/2 BC
c. Có chu vi tam giác ABC=AB+BC+AC
=DB+BC+CE(AB=BD,AC=CE)=14cm
mà HK=DE/2=>HK=14/2=7cm
B2. theo đề bài =>ED=1/2AD
FC=1/2BC
ÈF là đường trung bình của hình thang ABCD =>EF=1/2(AB+BC)
=>DE+FC+EF=(AB+AD+DC+BC+CD)/2
=>chu vi =5.2=10cm
a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
góc BAD=90 độ
Do đó: ABCD là hình chữ nhật
b: ED=DA
DA=CB
=>ED=CB
Xét tứ giác EDBC có
ED//BC
ED=BC
=>EDBC là hình bình hành
=>EB cắt DC tại trung điểm của mỗi đường
=>I là trung điểm của EB
=>IE=IB
c: Xét ΔACK có AH/AK=AM/AC
nên HM//CK
=>CK//BD
Xét ΔDAK có
DH vừa là đường cao, vừa là trung tuyến
=>ΔDAK cân tại D
=>DA=DK
mà DA=BC
nên DK=BC
Xét tứ giác CKBD có
CK//BD
CB=KD
=>CKBD là hình thang cân