K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2016

Ta có 10<n<99 nên 21<2n+1<199.Tìm số chính phương lẻ trong khoảng trên ta được 25;49;81;121;169 tương ứng với số n bằng 12;24;40;60;84.

Số 3n+1 Bằng 37;73;121;181;253.Chỉ có 121 là số chính phương .

Vậy n=40

8 tháng 1 2016

10\(\le\)n\(\le\)99\(\Leftrightarrow\)21\(\le\)2n+1\(\le\)201

2n+1 là số chính phương lẻ nên

2n+1\(\in\)(25;49;81;121;169).

\(\Leftrightarrow\)n\(\in\)(12;24;40;60;84)

\(\Leftrightarrow\)3n+1\(\in\)(37;73;121;181;253)

\(\Leftrightarrow\)n=40

 

8 tháng 1 2021

Vì \(n\)là số tự nhiên có 2 chữ số

\(\Rightarrow\)\(10\le n\le99\)\(\Rightarrow\)\(21\le2n+1\le199\)

Vì \(2n+1\)là số chính phương lẻ

\(\Rightarrow\)\(2n+1\in\left\{25;49;81;121;169\right\}\)

\(\Rightarrow\)\(2n\in\left\{24;48;80;120;168\right\}\)

\(\Rightarrow\)\(n\in\left\{12;24;40;60;84\right\}\)

Thay lần lượt các giá trị của \(n\)vào \(3n+1,\)ta có:

+ Với \(n=12\)\(\Rightarrow\)\(3n+1=3\times12+1=37\left(L\right)\)

+ Với \(n=24\)\(\Rightarrow\)\(3n+1=3\times24+1=73\left(L\right)\)

+ Với \(n=40\)\(\Rightarrow\)\(3n+1=3\times40+1=121\left(TM\right)\)

+ Với \(n=60\)\(\Rightarrow\)\(3n+1=3\times60+1=181\left(L\right)\)

+ Với \(n=84\)\(\Rightarrow\)\(3n+1=3\times84+1=253\left(L\right)\)

Vậy \(n=40\)

Chúc bn hok tốt ^_^

16 tháng 6 2018

10 \(\le\)\(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298

Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương

=> 2n + 1 thuộc { 25 ; 49  ; 81 ; 121 ;  169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )

Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298

=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )

Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương

29 tháng 11 2018

bài cô giao đi hỏi 

8 tháng 1 2021

Vì \(n\)là số tự nhiên có 2 chữ số

\(\Rightarrow\)\(10\le n\le99\)\(\Rightarrow\)\(21\le2n+1\le199\)

Vì \(2n+1\)là số chính phương lẻ

\(\Rightarrow\)\(2n+1\in\left\{25;49;81;121;169\right\}\)

\(\Rightarrow\)\(2n\in\left\{24;48;80;120;168\right\}\)

\(\Rightarrow\)\(n\in\left\{12;24;40;60;84\right\}\)

Thay lần lượt các giá trị của \(n\)vào \(3n+1,\)ta có:

+ Với \(n=12\)\(\Rightarrow\)\(3n+1=3\times12+1=37\left(L\right)\)

+ Với \(n=24\)\(\Rightarrow\)\(3n+1=3\times24+1=73\left(L\right)\)

+ Với \(n=40\)\(\Rightarrow\)\(3n+1=3\times40+1=121\left(TM\right)\)

+ Với \(n=60\)\(\Rightarrow\)\(3n+1=3\times60+1=181\left(L\right)\)

+ Với \(n=84\)\(\Rightarrow\)\(3n+1=3\times84+1=253\left(L\right)\)

Vậy \(n=40\)

Chúc bn hok tốt ^_^

8 tháng 1 2016

hoặc n ={1;3;5;7;9;11;13;15;17;19................}

tích nha ,cả 2 n đó

mk nhanh nhất

8 tháng 1 2016

Ta có: 10 <= n <= 99

=> 20 <= 2n <= 198

=> 21 <= 2n + 1 <= 199

Mà 2n + 1 là 1 số chính phương lẻ

=> 2n + 1 \(\in\){25; 49; 81; 121; 169}

=> 2n \(\in\){24;48;80;120;168}

=> n \(\in\){12;24;40;60;84}

=> 3n \(\in\){36; 72; 120; 180; 252}

=> 3n + 1 \(\in\){37; 73; 121; 181; 253}

Mà 3n + 1 là số chính phương

=> 3n + 1 = 121 => n = 40

13 tháng 3 2021

Do 2n + 1 là số chính phương lẻ nên 2n + 1 chia cho 4 dư 1. Suy ra n chẵn.

Do đó 3n + 1 là số chính phương lẻ. Suy ra 3n + 1 chia cho 8 dư 1 nên n chia hết cho 8.

Ta có số chính phương khi chia cho 5 dư 0; 1 hoặc 4.

Do đó \(2n+1;3n+1\equiv0;1;4\left(mod5\right)\).

Mặt khác \(2n+1+3n+1=5n+2\equiv2\left(mod5\right)\).

Do đó ta phải có \(2n+1;3n+1\equiv1\left(mod5\right)\Rightarrow n⋮5\).

Từ đó n chia hết cho 40.

Với n = 40 ta thấy thỏa mãn

Với n = 80 ta tháy không thỏa mãn.

Vậy n = 40.

8 tháng 8 2016

10 ≤ n ≤ 99 ↔ 21 ≤ 2n+1 ≤ 201

2n+1 là số chính phương lẻ nên

2n+1∈ {25;49;81;121;169}

↔ n ∈{12;24;40;60;84}

↔ 3n+1∈{37;73;121;181;253}

↔ n=40

 Vậy n=40

8 tháng 8 2016

Do 2n+1 là số chính phương lẻ nên 2n+1 chia 8 dư 1,vậy n là số chẵn.
Vì 3n+1 là số chính phương lẻ nên 3n+1 chia 8 dư 1
3n8
n8              (1)
Do 2n+1 và 3n+1 đều là số chính phương lẻ có tận cùng là 1;5;9.do đó khi chia cho 5 thì có số dư là 1;0;4
Mà (2n+1)+(3n+1)=5n+2 ,do đo 2n+1 và 3n+1 khi cho cho 5 đều dư 1
n5                (2)
Từ (1) và (2)n40
Vậy n=40k thì ...