K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2023

A B C O D E

a/

\(sđ\widehat{ACO}=\dfrac{1}{2}\left(sđcungAD-sđcungBE\right)\) (góc có đỉnh ngoài hình tròn)

\(\Rightarrow sđ\widehat{ACO}=\dfrac{1}{2}sđcungAD-\dfrac{1}{2}sđcungBE\) (1)

Ta có

\(sđ\widehat{AOD}=sđcungAD\) (Góc có đỉnh là tâm đường tròn)

\(\Rightarrow\dfrac{1}{2}sđcungAD=\dfrac{1}{2}sđ\widehat{AOD}\) (2)

Ta có

BC = OB = R => tg BOC cân tại B \(\Rightarrow\widehat{ACO}=\widehat{BOE}\) (góc ở đáy tg cân)

\(sđ\widehat{BOE}=sđcungBE\) (Góc có đỉnh là tâm đường tròn)

\(\Rightarrow\dfrac{1}{2}sđ\widehat{ACO}=\dfrac{1}{2}sđ\widehat{BOE}=\dfrac{1}{2}sđcungBE\) (3)

Thay (2) và (3) vào (1)

\(\Rightarrow sđ\widehat{ACO}=\dfrac{1}{2}sđ\widehat{AOD}-\dfrac{1}{2}sđ\widehat{ACO}\)

\(\Rightarrow2.sđ\widehat{ACO}=sđ\widehat{AOD}-sđ\widehat{ACO}\)

\(\Rightarrow sđ\widehat{AOD}=3.sđ\widehat{ACO}\)

b/

Ta có

AB = R = OA = OB => tg OAB là tg đều

\(\Rightarrow\widehat{OAB}=\widehat{OBA}=60^o\)

\(\Rightarrow\widehat{OBC}=180^o-\widehat{OBA}=180^o-60^o=120^o\)

Xét tg cân BOC có

\(\widehat{BCO}+\widehat{BOC}=180^o-\widehat{OBC}=180^o-120^o=60^o\)

Mà \(\widehat{BCO}=\widehat{BOC}\) (góc ở đáy tg cân)

\(\Rightarrow\widehat{BCO}=\widehat{BOC}=30^o\)

Xét tg AOC có

\(\widehat{AOC}=180^o-\left(\widehat{OAB}+\widehat{BOC}\right)=180^o-\left(60^o+30^o\right)=90^o\)

=> tg AOC vuông tại O

AC = AB + BC = 2R

\(\Rightarrow CO=\sqrt{AC^2-OA^2}=\sqrt{4R^2-R^2}=R\sqrt{3}\)

 

16 tháng 8 2019

Cho dữ liệu ko hỏi thì làm gì hả bn

16 tháng 8 2019

hỏi rồi còn gì bạn!a,chứng minh.b,Tính

22 tháng 9 2015

Đề không nói rõ là đoạn thẳng OC cắt đường tròn hay đường thẳng OC. Vì nếu là đường thăng thì sẽ có hai điểm D. Ta coi D là giao điểm của đoạn thẳng OC với đường tròn, nếu D là giao của tia đối của tia OC với đường tròn thì chỉ việc cộng thêm 2R.

Tam giác OAB có \(OA=OB=AB=R\to\Delta OAB\) đều. Suy ra \(\angle OBA=60^{\circ}.\) Do \(BC=BA=OB=R\to\Delta BCO\)  cân ở B. Vậy theo tính chất góc ngoài tam giác \(\angle OBA=\angle BOC+\angle BCO=2\angle BCO\to\angle BCO=\frac{60^{\circ}}{2}=30^{\circ}.\) Vậy góc ACD bằng 30 độ.

Kẻ OH vuông góc với AB. Vì tam giác OAB đều nên \(OH=\frac{\sqrt{3}}{2}AB=\frac{\sqrt{3}}{2}R=\frac{3\sqrt{3}}{2}.\) Tam giác OHC vuông ở H có góc đỉnh C bằng 30 độ nên \(OH=\frac{1}{2}OC\to OC=2\times\frac{3\sqrt{3}}{2}=3\sqrt{3}.\)  Mà \(OD=R=3\to CD=OC-OD=3\sqrt{3}-3.\)
 

26 tháng 10 2016

Giúp mình tra lời với

 

30 tháng 3 2019

Bạn tự vẽ hình nha ^-^

a) Xét tứ giác PDKI có PDK=PIK=90

mà 2 góc này ở vị trí đối nhau nên tứ giác PDKI là tứ giác nội tiếp

b)ta thấy : AIQ=1/2 cung AQ

                 BIQ=1/2 cung QB

mà cung QA=cung QB(gt)

nên IQ là phân giác của AIB

c)

AOQ=45 độ nên sđ cung AQ =45 độ

mà cung AQ= cung QB =45 độ

vậy sđ cung AQB= sđ cung AQ+sđ cung QB=90

d)

Xét tam giác CKI và CPD có

PCD chung 

CIK =CDP=90

nên CKI đồng dạng với CPD

vậy \(\frac{CK}{CP}=\frac{CI}{CP}\Leftrightarrow CD\cdot CK=CI\cdot CP\)(CẶP CẠNH TƯƠNG ỨNG)

xét tam giác CAP và CIB có:

PAB chung 

APC=CBI(góc nội tiếp cùng chắn cung AI)

nên CAP đồng dạng với CIB 

vậy\(\frac{CA}{CI}=\frac{CP}{CB}\Leftrightarrow CA\cdot CB=CI\cdot CP\)

\(\Rightarrow CA\cdot CB=CD\cdot CK\left(=CP\cdot CI\right)\)