Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(BDT\Leftrightarrow a^2+b^2+c^2+2abc+1-2\left(ab+bc+ca\right)\ge0\)
\(\Rightarrow\left(a-b\right)^2+\left(c-1\right)^2+2c\left(a-1\right)\left(b-1\right)\ge0\)
Từ đây ta thấy trong 3 số a,b,c sẽ có 2 số hoặc cùng \(\ge1\) hoặc cùng \(\le1\).giả sử 2 số đó là a và b suy ra \(\left(a-1\right)\left(b-1\right)\ge0\)
Vậy BĐT đầu luôn đúng
Thích Dirichlet thì chơi Dirichlet
Theo nguyên lý Dirichlet thì trong ba số (a - 1); (b - 1); (c - 1) luôn tồn tại ít nhất 2 số cùng dấu.
Không mất tính tổng quát ta giả sử hai số đó là (a - 1) và (b - 1).
\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)
\(\Leftrightarrow2c\left(a-1\right)\left(b-1\right)\ge0\)
\(\Leftrightarrow2abc\ge2\left(ac+bc-c\right)\)
Giờ ta cần chứng minh
\(a^2+b^2+c^2+2\left(ac+bc-c\right)+1\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a-b\right)^2+\left(c-1\right)^2\ge0\)
Dấu = xảy ra khi a = b = c = 1
Ta có : \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ( Luôn đúng )
Dấu \("="\) hiển nhiên xảy ra khi \(a=b=c\)
TA CÓ:
\(a^4b^2+b^4c^2\ge2a^2b^3c,b^4c^2+c^4a^2\ge2b^2c^3a,c^4a^2+a^4b^2\ge2c^2a^3b\)
\(\Rightarrow a^4b^2+b^4c^2+c^4a^2+\frac{5}{9}\ge a^2b^3c+b^2c^3a+c^2a^3b+\frac{5}{9}\)
ĐẶT \(ab=x,bc=y,ca=z\Rightarrow x+y+z=1\)
\(\Rightarrow a^2b^3c+b^2c^3a+c^2a^3b+\frac{5}{9}=x^2y+y^2z+z^2x+\frac{5}{9}\)
TA CẦN C/M:
\(x^2y+y^2z+z^2x+\frac{5}{9}\ge2\left(xy+yz+zx\right)\) \(\left(=2abc\left(a+b+c\right)\right)\)
ÁP DỤNG BĐT BUNHIA TA CÓ:
\(\left(x^2y+y^2z+z^2x\right)\left(x+y+z\right)\ge\left(xy+yz+zx\right)^2\) DO:\(\left(x+y+z=1\right)\)
VẬY CẦN C/M:
\(\left(xy+yz+zx\right)^2+\frac{5}{9}\ge2\left(xy+yz+zx\right)\)
XÉT HIỆU:
\(\left(xy+yz+zx\right)^2-2\left(xy+yz+zx\right)+1-\frac{4}{9}=\left(xy+yz+zx-1\right)^2-\frac{2^2}{3^2}\)
\(=\left(xy+yz+zx-\frac{1}{3}\right)\left(xy+yz+zx-\frac{5}{3}\right)\)
VÌ:
\(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=\frac{1}{3}\Leftrightarrow xy+yz+zx-\frac{1}{3}\le0\)
\(\Rightarrow\left(xy+yz+zx-\frac{1}{3}\right)\left(xy+yz+zx-\frac{5}{3}\right)\ge0\)
\(\Rightarrow DPCM\)
Bài này mình có hỏi trên mạng ấy bạn bài này nhiều cách lắm tại mình thấy cách này dễ hiểu nên gửi cho b
Giả sử \(c=min\left\{a,b,c\right\}\)
Ta viết BĐT lại thành:\(\frac{5}{9}\left(ab+bc+ca\right)^3+a^4b^2+b^4c^2+c^4a^2\ge2abc\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(VT-VP=(a-b)^2(a^2c^2+\frac{17}{9}abc^2+b^2c^2+\frac{5}{9}ac^3+\frac{5}{9}bc^3)+(a-c)(b-c)(a^3b+\frac{5}{9}a^2b^2+a^3c+\frac{11}{9}a^2bc+\frac{2}{9}ab^2c+a^2c^2)\ge0\)
a/ Đề sai (ko nói đến chuyện nhầm lẫn ở hạng tử thứ 2 lẽ ra là bc), bạn cho \(a=b=c=d=0,1\) là thấy vế trái lớn hơn vế phải
b/ \(\frac{1}{2}xy.2xy\left(x^2+y^2\right)\le\frac{1}{2}.\frac{\left(x+y\right)^2}{4}.\frac{\left(2xy+x^2+y^2\right)^2}{4}=\frac{\left(x+y\right)^6}{32}=\frac{64}{32}=2\)
Dấu "=" xảy ra khi \(x=y=1\)
c/ Bình phương 2 vế:
\(\Leftrightarrow\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+2\left(a^2+b^2+c^2\right)\ge3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}\ge a^2+b^2+c^2\)
Ta có: \(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}\ge2b^2\) ; \(\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}\ge2c^2\); \(\frac{a^2b^2}{c^2}+\frac{a^2c^2}{b^2}\ge2a^2\)
Cộng vế với vế:
\(2\left(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}\right)\ge2\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow...\)
Dấu "=" xảy ra khi \(a=b=c\)
Haiz giải ra rồi
Ta có : \(VT=\Sigma\left(\frac{a^2-bc}{2ka^2+k^2b^2+c^2}\right)\ge0\)
\(\Leftrightarrow\Sigma\left(\frac{2k\left(a^2-bc\right)}{2ka^2+k^2b^2+c^2}\right)\ge0\)
\(\Leftrightarrow\Sigma\left(\frac{2ka^2-2kbc}{2ka^2+k^2b^2+c^2}\right)\ge0\)
\(\Leftrightarrow\Sigma\left(\frac{2ka^2+k^2b^2+c^2+2ka^2-2kbc-2ka^2-k^2b^2-c^2}{2ka^2+k^2b^2+c^2}\right)\ge0\)
\(\Leftrightarrow\Sigma\left(1-\frac{2kbc-2ka^2+2ka^2+k^2b^2+c^2}{2ka^2+k^2b^2+c^2}\right)\ge0\)
\(\Leftrightarrow\Sigma\left(1-\frac{k^2b^2+2kbc+c^2}{\left(k^2b^2+ka^2\right)+\left(ka^2+c^2\right)}\right)\ge0\)
\(\Leftrightarrow\Sigma\left(1-\frac{\left(kb+c\right)^2}{\left(k^2b^2+ka^2\right)+\left(ka^2+c^2\right)}\right)\ge0\)
Áp dụng bất đẳng thức Cauchy-Schwarz :
\(VT=\Sigma\left(1-\frac{\left(kb+c\right)^2}{\left(k^2b^2+ka^2\right)+\left(ka^2+c^2\right)}\right)\ge\Sigma\left[1-\left(\frac{k^2b^2}{k^2b^2+ka^2}+\frac{c^2}{ka^2+c^2}\right)\right]\)
\(=3-\left(\frac{k^2b^2+ka^2}{k^2b^2+ka^2}+\frac{ka^2+c^2}{ka^2+c^2}+\frac{k^2b^2+c^2}{k^2b^2+c^2}\right)=3-3=0\)( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a=b=c\\k>0\end{matrix}\right.\)
Ta có: \(1-\frac{2k\left(a^2-bc\right)}{2ka^2+k^2b^2+c^2}=\frac{\left(kb+c\right)^2}{2ka^2+k^2b^2+c^2}\)
Ta có thể viết lại bất đẳng thức thành
\(\sum\frac{\left(kb+c\right)^2}{2ka^2+k^2b^2+c^2}\le3\)
Sử dụng BĐT Cauchy-Schwarz, ta có:
\(\frac{\left(kb+c\right)^2}{2ka^2+k^2b^2+c^2}=\frac{\left(kb+c\right)^2}{k\left(a^2+kb^2\right)+c^2+ka^2}\le\frac{kb^2}{a^2+kb^2}+\frac{c^2}{c^2+kc^2}\)
Tương tự rồi cộng lại, ta có điều phải chứng minh. Đẳng thức xảy ra khi \(a=b=c\), hoặc \(a=\frac{b}{k}=\frac{c}{k^2}\), hoặc \(b=\frac{c}{k}=\frac{a}{k^2}\), hoặc \(c=\frac{a}{k}=\frac{b}{k^{^2}}\)
Hoặc ta có thể làm như sau.
\(\frac{\left(kb+c\right)^2}{2ka^2+k^2b^2+c^2}=\frac{kb^2}{a^2+kb^2}+\frac{c^2}{c^2+kc^2}-\frac{k\left(a^2-bc\right)^2\left(kb-c\right)^2}{\left(a^2+kb^2\right)\left(c^2+kc^2\right)\left(2ka^2+k^2b^2+c^2\right)}\)
Ta có đẳng thức sau:
\(\sum\frac{\left(kb+c\right)^2}{2ka^2+k^2b^2+c^2}=3-p\sum\frac{\left(a^2-bc\right)^2\left(kb-c\right)^2}{\left(a^2+kb^2\right)\left(c^2+ka^2\right)\left(2ka^2+k^2b^2+c^2\right)}\)
\(\sum\frac{a^2-bc}{2ka^2+k^2b^2+c^2}=\frac{1}{2}\sum\frac{\left(a^2-bc\right)^2\left(kb-c\right)^2}{\left(a^2+kb^2\right)\left(c^2+ka^2\right)\left(2ka^2+k^2b^2+c^2\right)}\)
Do đó, bất đẳng thức ban đầu tương đương với
\(\sum\frac{\left(b^2+kc^2\right)\left(a^2-bc\right)^2\left(kb-c\right)^2}{2ka^2+k^2b^2+c^2}\ge0\)
Ta viết lại bất đẳng thức cần chứng mình là:
\(a^2+2\left(bc-b-c\right)a+b^2+c^2-2bc+1\ge0\)
Xét: \(f\left(a\right)=a^2+2\left(bc-b-c\right)a+b^2+c^2-2bc+1\)
Ta thấy nếu \(bc-b-c\ge0\)khi đó ta luôn có \(f\left(a\right)\ge0\)hay:
\(a^2+2\left(bc-b-c\right)a+b^2+c^2-2bc+1\ge0\)
Bây giờ xét trường hợp sau: \(bc-b-c\le0\)
Khi đó ta có:\(\Delta_a=\left(bc-b-c\right)^2-\left(b^2+c^2-2bc+1\right)\)
Mà số hạng từ bậc 2 là số dương để \(f\left(a\right)\ge0\)thì ta phải chỉ ra được:
\(\Delta_a=\left(bc-b-c\right)^2-\left(b^2+c^2-2bc+1\right)\le0\)
Hay \(bc\left(b-2\right)\left(c-2\right)-1\le0\)
Để ý \(bc-b-c\le0\)ta được \(\left(b-1\right)\left(c-1\right)\le1\)lúc này khả năng xảy ra các trường hợp sau:
- Cả \(\left(b-1\right);\left(c-1\right)\)cùng nhỏ hơn 1 hay cả b,c nhỏ hơn 2 và theo bất đẳng thức Cô si ta được:
\(b\left(2-b\right)\le\frac{\left(b+2-b\right)^2}{4}=1;c\left(2-c\right)\le\frac{\left(c+2-c\right)^2}{4}=1\)
\(\Rightarrow bc\left(b-2\right)\left(c-2\right)\le1\)nên ta có \(bc\left(b-2\right)\left(c-2\right)-1\le0\)
Trong 2 số \(\left(b-1\right);\left(c-1\right)\)có một số lớn hơn 1 và một số nhỏ hơn 1 khi đó trong b,c có số lớn hơn hoặc nhỏ hơn 2
\(\Rightarrow bc\left(b-2\right)\left(c-2\right)\le0\Leftrightarrow bc\left(b-2\right)\left(c-2\right)-1\le0\)
Vậy cả 2 khả năng đều cho \(\Delta_a\le0\)nên bất đẳng thức đã được chứng minh. Bài toán đã được chứng mình xong.
Nguyễn Xuân Đình Lực:
mình ghi rõ trên rùi, sắp xếp theo thứ tự luôn cho dễ nhìn kìa bạn:
Cặp 1: $a^3b$ và $abc^2$ tạo ra $a^2bc$
Cặp 2: $b^3c$ và $bca^2$ tạo ra $b^2ca$
Cặp 3: $c^3a$ và $cab^2$ tạo ra $c^2ab$
Lời giải:
Ba số thực $a,b,c$ cần có thêm điều kiện không âm mới đúng.
BĐT cần chứng minh tương đương với:
$ab^3+bc^3+ca^3+2abc(a+b+c)\leq a^3b+b^3c+c^3a+ab^3+bc^3+ca^3+abc(a+b+c)$
$\Leftrightarrow abc(a+b+c)\leq a^3b+b^3c+c^3a(*)$
Áp dụng BĐT Bunhiacopxky:
$(a^3b+b^3c+c^3a)(abc^2+bca^2+cab^2)\geq (a^2bc+b^2ca+c^2ab)^2$
$\Rightarrow a^3b+b^3c+c^3a\geq abc(a+b+c)$
BĐT $(*)$ đúng nên ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
n là tham số hay sao ah?
Anh quên mất \(n\ge0\)