Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)
gọi 2 số chẳn liên tiếp là 2k ;2k+2 (k thuộc N)
ta có \(2k.\left(2k+2\right)=2k.2k+2k.2\)
\(=2.2.k.k+4k\)
\(=4k^2+4k\)
mà \(4k^2+4k\) chia hết cho 4
=>\(2k.\left(2k+2\right)\) chia hết cho 4
a)Goi 2 so tu nhien lien tiep la a;a+1
Neu a la so chan:a.(a+1) la so chan hay a.(a+1) chia het cho 2
Neu a la so le:a+1 la so le
Vay tich2 so tu nhien lien tiep chia het cho 2
a) Ta có:
\(10^{10}=10...0\Rightarrow10^{10}-1=10..0-1=9..99\)
Nên \(10^{10}-1\) ⋮ 9
b) Ta có:
\(10^{10}=10...0\Rightarrow10^{10}+2=10..0+2=10..2\)
Mà: \(1+0+0+...+2=3\) ⋮ 3
Nên: \(10^{10}+2\) ⋮ 3
hai số tự nhiên liên tiếp thì phải có 1 số chẵn và 1 số lẻ mà tích của 1 số chẵn với 1 số lẻ thì là 1 số chẵn
\(a,\) Trong hai số tự nhiên liên tiếp luôn có một số chẵn và lẻ do đó tích hai số tự nhiên liên tiếp là:
\(\text{chẵn . lẻ = chẵn}\) \(\xrightarrow[]{}\) \(\text{Chia hết cho 2}\)
\(b,\) Trong ba số tự nhiên liên tiếp luôn có một số chia hết cho 3 và ba số tự nhiên liên tiếp có thể là \(3k;3k+1;3k+2\) do đó tích ba số tự nhiên liên tiếp là:
\(3k.\left(3k+1\right).\left(3k+2\right)\xrightarrow[]{}\text{Chia hết cho 3}\)
Đáp án:
Vì bốn số liên tiếp phải có 1 số chia hết cho 4 nên tích đó chia hết cho 4.
Vd: 1*2*3*4 thì có 4 chia hết cho 4. thử tính: 1*2*3*4=24, 24/4=6 nên chia hết cho 4.
Vd: 7*8*9*10 thì có 8 chia hết cho 4. thử tính: 7*8*9*10=5040, 5040/4=1260 nên chia hết cho 4.
Vd: 27*28*29*30 thì có 28 chia hết cho 4. thử tính: 27*28*29*30=657220, 657220/4=164430 nên chia hết cho 4.
Trong 4 số tự nhiên liên tiếp sẽ có 1 số \(⋮\) 2, 1 số \(⋮\) 3, 1 số \(⋮\) 4.
Mà 2x 3x 4= 24.
=> Tích 4 số tự nhiên liên tiếp \(⋮\) 24.
chữ số tận cùng của tích hai số tự nhiên liên tiếp là:0,2,6.Vì cả 0,2,6 đều chia hết cho 2 nên tích 2 số tự nhiên chia hết cho 2.
sorry,thiếu chỗ:nên tích 2 số tự nhiên chia hết cho 2
thêm vào từ liên tiếp chổ:số tự nhiên liên tiếp chia hết cho 2.
Gọi 3 số tự nhiên đó là: \(n-1;\)\(n;\)\(n+1\) (\(n\ge1;\)\(n\in N\))
Tích 3 số là: \(A=\left(n-1\right)n\left(n+1\right)\)
- Nếu: \(n=3k\)thì: \(A⋮3\)
- Nếu: \(n=3k+1\)thì: \(n-1=3k+1-1=3k\)\(⋮\)\(3\)\(\Rightarrow\)\(A⋮3\)
- Nếu: \(n=3k+2\)thì: \(n+1=3k+2+1=3k+3\)\(⋮\)\(3\)\(\Rightarrow\)\(A⋮3\)
Vậy tích 3 số tự nhoeen liên tiếp luôn chia hết cho 3