Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a) + ME // BD
\(\Rightarrow\dfrac{ME}{BD}=\dfrac{AM}{AB}=\dfrac{a}{a+b}\)
\(\Rightarrow\dfrac{ME}{b}=\dfrac{a}{a+b}\Rightarrow ME=\dfrac{ab}{a+b}\)
+ Tương tự : \(MF=\dfrac{ab}{a+b}\)
b) +ΔMEF có ME = MF, \(\widehat{EMF}=60^o\)
=> ΔMEF đều
2.
+ AB // CD \(\Rightarrow\dfrac{AE}{CF}=\dfrac{OE}{OF}\)
+ Tương tự : \(\dfrac{BE}{DF}=\dfrac{OE}{OF}\)
\(\Rightarrow\dfrac{BE}{DF}=\dfrac{AE}{CF}\) => DF = CF ( do AE = BE )
=> F là trung điểm của CD
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
Vì các tam giác AMC và BMD đều nên B M D ^ = M A C ^ = 90 ° (vì hai góc ở vị trí đồng vị) => MD // AC
Vì MD // AC nên theo hệ quả định lý Talet cho hai tam giác DEM và AEC ta có M E E C = M D A C = b a
Suy ra
M E E C = b a ⇒ M E M E + E C = b b + a ⇒ M E a = b b + a ⇒ M E = a b b + a
Tương tự MF = b a a + b
Vậy M E = M F = a b b + a
Đáp án: B
a) Ta có:
\(\widehat{CMA}=\widehat{DBA}\left(=60^o\right)\)
Mà 2 góc nằm ở vị trí đồng vị
=> EM//BD
Xét tam giác ABD ta có:
EM//BD(cmt)
=> \(\dfrac{EM}{BD}=\dfrac{AM}{AB}\Rightarrow\dfrac{EM}{b}=\dfrac{a}{ab}\Rightarrow EM=1\)
Cmtt: \(\dfrac{FM}{AC}=\dfrac{BM}{AB}\Rightarrow\dfrac{FM}{b}=\dfrac{a}{ab}\Rightarrow FM=1\)
b) Ta có:
FM=EM(=1)
=> tam giác EMF cân tại M
Ta có:
\(\widehat{CMA}+\widehat{EMF}+\widehat{DMB}=180^o\)
\(60^o+\widehat{EMF}+60^o=180^o\)
\(\widehat{EMF}=60^o\)
Xét tam giác EMF cân tại M ta có:
\(\widehat{EMF}=60^o\) (cmt)
=> tam giác EMF đều
Bài 1:
a: Xét tứ giác ABCD có góc B+góc D=180 độ
nên ABCD là tứ giác nội tiếp
=>góc BAC=góc BDC và góc DAC=góc DBC
mà góc CBD=góc CDB
nên góc BAC=góc DAC
hay AC là phân giác của góc BAD
b: Ta có: góc BCA=góc BAC
=>góc BCA=góc CAD
=>BC//AD
=>ABCD là hình thang
mà góc B=góc BCD
nên ABCD là hình thang cân
7)
a) ta có:
\(\widehat{AKE}=\widehat{BAD}\) (đồng vị và AD//KM)
\(\widehat{AEK}=\widehat{DAE}\) (so le trong và AD//KM)
\(\widehat{BAD}=\widehat{DAE}\) (AD là tia phân giác)
=> \(\widehat{AKE}=\widehat{AEK}\)
=> tam giác AKE cân tại A
=> AK=AE
b) Xét tam giác BKM ta có:
AD//KM(gt)
=> \(\dfrac{BK}{AK}=\dfrac{MB}{MD}\) (Đlý thales thuận)
Xét tam giác ADC ta có:
AD//EM(gt)
=> \(\dfrac{CE}{AE}=\dfrac{CM}{MD}\) (Đlý thales thuận)
Mà AE=AK(cmt)
CM=MB(M là trung điểm BC)
Nên \(\dfrac{CE}{AK}=\dfrac{MB}{MD}\)
Mà \(\dfrac{BK}{AK}=\dfrac{MB}{MD}\) (cmt)
Nên CE=AB
9) Xét tam giác ODF ta có:
DF//EB(tc hthang ABCD)
=> \(\dfrac{DF}{EB}=\dfrac{FO}{EO}\) (Hệ quả Thales)
Xét tam giác OCF ta có:
CF//EA(tc hthang ABCD)
=> \(\dfrac{FC}{AE}=\dfrac{FO}{EO}\) (Hệ quả Thales)
Mà \(\dfrac{DF}{EB}=\dfrac{FO}{EO}\) (cmt)
AE=EB(E là trung điểm AB)
Nên DF=FC
=> F là trung điểm DC