Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
~~~Ủa bn j đó ơi, mk đăng nhiều đâu liên quan gì đến bạn đâu nhỉ, bạn giúp mình thì mình xin cảm ơn nhưng mong bn lần sau đừng nói vậy~~~
1. Tính tổng:
Số số hạng có trong tổng là:
(999-1):1+1=999 (số)
Số cặp có là:
999:2=499 (cặp) và dư một số đó là số 500
Bạn hãy gộp số đầu và số cuối:
(999+1)+(998+2)+.........+ . 499(số cặp) + 500 = 50400
Vậy tổng S1 = 50400
Mih sẽ giải tiếp nha
Số tự nhiên a sẽ chia hết cho 4 vì:
36+12=48 sẽ chia hết co 4
Số a ko chia hết cho 9 vì:
4+8=12 ko chia hết cho 9
Gọi d ∈ ƯCLN(5n + 6, 3n +1)
Để phân số 5n+63n+15n+63n+1 rút gọn được thì ⎧⎨⎩5n+6⋮d3n+1⋮d{5n+6⋮d3n+1⋮d
⇒⎧⎨⎩3(5n+6)⋮d5(3n+1)⋮d⇒⎧⎨⎩15n+18⋮d15n+5⋮d⇒{3(5n+6)⋮d5(3n+1)⋮d⇒{15n+18⋮d15n+5⋮d
⇒15n+18−(15n+5)⋮d⇒15n+18−(15n+5)⋮d
⇒15n+18−15n−5⋮d⇒15n+18−15n−5⋮d
⇒13⋮d⇒13⋮d
⇒d∈Ư(13)={1;13}⇒d∈Ư(13)={1;13}
Để phân số 5n+63n+15n+63n+1 rút gọn được thì d = 13
⇒3n+1⋮13⇒3n+1⋮13
⇒3n+1+12−12⋮13⇒3n+1+12−12⋮13
⇒3n−12+13⋮13⇒3n−12+13⋮13
⇒3n−12⋮13⇒3n−12⋮13
⇒3(n−4)⋮13⇒3(n−4)⋮13
⇒(n−4)⋮13⇒(n−4)⋮13 vì (3,13) = 1
⇒n−4=13k⇒n−4=13k
⇒n=13k+4⇒n=13k+4
ta có: 60<n<10060<n<100
⇒60<13k+4<100⇒60<13k+4<100
⇒56<13k<96⇒56<13k<96
⇒5≤k≤7⇒5≤k≤7
⇒k∈{5;6;7}⇒k∈{5;6;7}
⇒n∈{69;82;95}
gọi 4 số tự nhiên liên tiếp là a, a+1,a+2,a+3
tổng của 3 tự nhien liên tiếp là: a+a+1+a+2=3a+3=3.(a+1) chia hết cho 3
tổng của 4 số tự nhiên liên tiếp là: a+a+1+a+2+a+3=4a+6=4.(a+1)+2 ko chia hết cho 4
thanks bn những bn có thể tra lời giúp mình hết có được ko???
a)Gọi 3 STN liên tiếp đó là a,a+1,a+2
Ta có: a+(a+1)+(a+2)=3a+3\(⋮\)3
b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3
Ta có: a+(a+1)+(a+2)+(a+3)=4a+6
4a \(⋮\)4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4
c)https://olm.vn/hoi-dap/detail/1244453028.html?pos=715628858
d)https://olm.vn/hoi-dap/detail/89811124041.html?pos=188188079430
a)Gọi 3 STN liên tiếp đó là a,a+1,a+2
Ta có: a+(a+1)+(a+2)=3a+3⋮⋮3
b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3
Ta có: a+(a+1)+(a+2)+(a+3)=4a+6
4a ⋮⋮4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4
Ta có: 7 số nguyên đó sẽ có dạng toàn là 2k hoặc toàn là 2k+1 hoặc cả 2k và 2k+1:
Xét TH1: (toàn có dạng 2k);
suy ra cả 7 số đều là chẵn nên chia hết cho 2 và chia hết cho : 7x2=14;
Mà 14 chia hết cho 7 nên TH1 chia hết cho 7;
Xét TH2: (toàn có dạng 2k+1);
suy ra 7 x (2k+1) chia hết cho 7;
Vậy TH2 chia hết cho 7;
Xét TH3: Tồn tại ít nhất 2 chẵn và 2 lẻ nên cũng tồn tại ít nhất 1 tổng chia hết cho 7;
Ta có điều phải chứng minh...
cái đề bài của bạn hơi bị sao í..."tổng của 1 số hạng" là sao z?
a: Số số hạng là:
(2019-1):2+1=1010(số)
Tổng là:
\(\dfrac{2020\cdot1010}{2}=1020100\)