Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(a,b,c\) là các số dương suy ra:
\(a>0;b>0;c>0\)
Suy ra: \(a+b+c>0\)
Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2-3ab\left(a+b+c\right)\right]=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Rightarrow a+b+c=0\) hoặc \(a^2+b^2+c^2-ab-bc-ca=0\)
Do \(a+b+c>0\)
Suy ra: \(a^2+b^2+c^2-ab-bc-ca=0\)
\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Suy ra: \(a-b=0;b-c=0\) và \(c-a=0\)
Suy ra: \(a=b=c\)
Suy ra: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\)
Ta có: \(\left(\frac{a}{b}-1\right)+\left(\frac{b}{c}-1\right)+\left(\frac{c}{a}-1\right)=\left(1-1\right)+\left(1-1\right)+\left(1-1\right)=0\)
Vậy ...
Sau khi giải bài này xong mình cảm thấy hoa mắt và chóng mặt, mong GP sẽ gấp đôi :)
Bài làm
Ta có : a3 + b3 + c3 = 3abc
<=> ( a3 + b3 ) + c3 - 3abc = 0
<=> ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0
<=> [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0
<=> ( a + b + c )[ ( a + b )2 - ( a + b )c + c2 ] - 3ab( a + b + c ) = 0
<=> ( a + b + c )( a2 + 2ab + b2 - ac - bc + c2 - 3ab ) = 0
<=> ( a + b + c )( a2 + b2 + c2 - ab - bc - ac ) = 0
<=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{cases}}\)
Vì a, b, c dương => a + b + c > 0 => a + b + c = 0 vô lí
Xét a2 + b2 + c2 - ab - bc - ac = 0
<=> 2( a2 + b2 + c2 - ab - bc - ac ) = 2.0
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0
<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( a2 - 2ac + c2 ) = 0
<=> ( a - b )2 + ( b - c )2 + ( a - c )2 = 0
VT ≥ 0 ∀ a,b,c . Đẳng thức xảy ra <=> \(\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\a=c\end{cases}}\Leftrightarrow a=b=c\)
=> \(P=\left(\frac{a}{b}-1\right)+\left(\frac{b}{c}-1\right)+\left(\frac{c}{a}-1\right)=\left(\frac{a}{a}-1\right)+\left(\frac{b}{b}-1\right)+\left(\frac{c}{c}-1\right)\)
\(=\left(1-1\right)+\left(1-1\right)+\left(1-1\right)\)
\(=0\)
2) Ta có : \(\left|x-1\right|+\left|1-x\right|=2\) (1)
Xét 3 trường hợp :
1. Với \(x>1\) , phương trình (1) trở thành : \(x-1+x-1=2\Leftrightarrow2x=4\Leftrightarrow x=2\) (thoả mãn)
2. Với \(x< 1\), phương trình (1) trở thành : \(1-x+1-x=2\Leftrightarrow2x=0\Leftrightarrow x=0\)(thoả mãn)
3. Với x = 1 , phương trình vô nghiệm.
Vậy tập nghiệm của phương trình : \(S=\left\{0;2\right\}\)
1) Cách 1:
Ta có ; \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)
Mặt khác theo bất đẳng thức Cauchy :\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\) ;\(\frac{b}{c}+\frac{c}{b}\ge2\) ; \(\frac{c}{a}+\frac{a}{c}\ge2\)
\(\Rightarrow A\ge1+2+2+2=9\). Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{a}\\\frac{b}{c}=\frac{c}{b}\\\frac{a}{c}=\frac{c}{a}\end{cases}}\)\(\Leftrightarrow a=b=c\)
Vậy Min A = 9 <=> a = b = c
Cách 2 : Sử dụng bđt Bunhiacopxki : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(1+1+1\right)^2=9\)
Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\left(a^3+b^3\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left[\left(a+b\right)^3+c^3\right]-\left[3ab\left(a+b\right)+3abc\right]=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
Nếu \(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow a=b=c\)
Khi đó \(A=2^3=8\)
Nếu \(a+b+c=0\Rightarrow a+b=-c;b+c=-a;c+a=-b\)
Thay vào ta được:
\(A=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{c+a}{a}=\frac{-abc}{abc}=-1\)
Vậy A = 8 hoặc A = -1
Dễ dàng chứng minh được:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với \(x,y>0\)(1)
Dấu bằng xảy ra \(\Leftrightarrow x=y>0\)
Ta có:
\(\frac{a}{bc\left(a+1\right)}=\frac{a}{abc+bc}=\frac{a}{ab+bc+ca+bc}=\frac{a}{\left(ab+bc\right)+\left(bc+ca\right)}\)
Áp dụng (1), ta được:
\(\frac{1}{ab+bc}+\frac{1}{bc+ca}\ge\frac{4}{\left(ab+bc\right)+\left(bc+ca\right)}\)
\(\Leftrightarrow\frac{1}{4\left(ab+bc\right)}+\frac{1}{4\left(bc+ca\right)}\ge\frac{1}{ab+bc+bc+ca}\)
\(\Leftrightarrow\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ca}\right)\ge\frac{a}{ab+bc+bc+ca}\)
\(\Leftrightarrow\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ca}\right)\ge\frac{a}{bc\left(a+1\right)}\left(2\right)\)
Dấu bằng xảy ra \(\Leftrightarrow b=c>0\)
Chúng minh tương tự, ta được:
\(\frac{b}{4}\left(\frac{1}{ab+ca}+\frac{1}{bc+ca}\right)\ge\frac{b}{ca\left(b+1\right)}\left(3\right)\)
Dấu bằng xảu ra \(\Leftrightarrow a=c>0\).
\(\frac{c}{4}\left(\frac{1}{ac+ab}+\frac{1}{ab+bc}\right)\ge\frac{c}{ab\left(c+1\right)}\left(4\right)\)
Từ (2), (3) và (4), ta được:
\(\frac{a}{bc\left(a+1\right)}+\frac{b}{ca\left(b+1\right)}+\frac{c}{ab\left(c+1\right)}\le\)\(\frac{a}{4}\left(\frac{1}{ab+bc}+\frac{1}{bc+ac}\right)+\frac{b}{4}\left(\frac{1}{ac+bc}+\frac{1}{ac+ab}\right)\)\(+\frac{c}{4}\left(\frac{1}{ab+bc}+\frac{1}{ab+ac}\right)\)
\(\Leftrightarrow P\le\frac{1}{4}.\left(\frac{a}{ab+bc}+\frac{c}{ab+bc}\right)+\frac{1}{4}\left(\frac{a}{bc+ac}+\frac{b}{bc+ac}\right)\)\(+\frac{1}{4}\left(\frac{b}{ab+ac}+\frac{c}{ab+ac}\right)\)
\(\Leftrightarrow P\le\frac{a+c}{4\left(ab+bc\right)}+\frac{a+b}{4\left(bc+ac\right)}+\frac{b+c}{4\left(ab+ac\right)}\)
\(\Leftrightarrow P\le\frac{a+c}{4b\left(a+c\right)}+\frac{a+b}{4c\left(a+b\right)}+\frac{b+c}{4a\left(b+c\right)}\)
\(\Leftrightarrow P\le\frac{1}{4b}+\frac{1}{4c}+\frac{1}{4a}\)
\(\Leftrightarrow P\le\frac{1}{4}\left(\frac{ab+bc+ca}{abc}\right)\)
\(\Leftrightarrow P\le\frac{1}{4}.\frac{abc}{abc}=\frac{1}{4}.1=\frac{1}{4}\)( vì \(ab+bc+ca=abc\))
Dấu bằng xảy ra
\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\ab+bc+ca=abc\end{cases}}\Leftrightarrow a=b=c=3\)
Vậy \(minP=\frac{1}{4}\Leftrightarrow a=b=c=3\)
\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=8abc\)
\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ac+c^2\right)-8abc=0\)
\(\Leftrightarrow a^2b+abc+a^2c+ac^2+ab^2+b^2c+abc+bc^2-8abc=0\)
\(\Leftrightarrow\left(a^2b-2abc+c^2b\right)+\left(a^2c-2abc+b^2c\right)+\left(ab^2-2abc+ac^2\right)=0\)
\(\Leftrightarrow b\left(a-c\right)^2+c\left(a-b\right)^2+a\left(b-c\right)^2=0\)
Do a;b;c dương nên \(b\left(a-c\right)^2;c\left(a-b\right)^2;a\left(b-c\right)^2\ge0\forall a;b;c\)
\(\Rightarrow b\left(a-c\right)^2+c\left(a-b\right)^2+a\left(b-c\right)^2\ge0\)
Đẳng thức xảy ra \(\Leftrightarrow a=b=c\) Thay vào P ta được :
\(P=\frac{a^3+a^3+a^3}{a.a.a}=\frac{3a^3}{a^3}=3\)