Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Ta có: \(16x+40=10\cdot3^2+5\left(1+2+3\right)\)
\(\Leftrightarrow16x+40=90+30\)
\(\Leftrightarrow16x=80\)
hay x=5
Bài 1:
$-1+2-3+4-5+6-7+8-...-2019+2020-2021$
$=(2+4+6+8+...+2020)-(1+3+5+...+2021)$
$=(\frac{2020-2}{2}+1).\frac{2020+2}{2}-(\frac{2021-1}{2}+1).\frac{2021+1}{2}=1021110- 1022121=-1011$
Bài 1 cách 2:
$A=-1+2-3+4-5+6-7+8-....-2019+2020-2021$
$=-1+(2-3)+(4-5)+(6-7)+....+(2020-2021)$
$=-1+\underbrace{(-1)+(-1)+...+(-1)}_{1010}=-1+(-1).1010=-1011$
Từ 1 đến 2002 sẽ có:
\(\left(2002-1\right):1+1=2002\left(số\right)\)
=>Sẽ có 2002/2=1001 cặp có tổng là -1 là (1;-2);(3;-4);...;(2001;-2002)
M=1+(-2)+3+(-4)+...+2001+(-2002)+2003
=(1-2)+(3-4)+...+(2001-2002)+2003
=2003-1*1001
=2003-1001
=1002
a)-2020+(2019-1968)-(2019-2020)=2020+51-(-1)=2071+1=2072
b)-37x16+36x(-37)-2x(-37)=-37x(16+36-2)=-37x50=-1850
c)1000:(-10)2+3.(-5)-(-155).0=-100.2+(-15)-0=-200+-15=-215
a)-1-2-3-4-5-6-....-80
=(-1)+(-2)+(-3)+(-4)+(-5)+(-6)+...+(-80)
Khoảng cách giữa các số:(-1)-(-2)=1
Tổng các số hạng:(-1)-(-80)+1=80 số
Tổng:[(-1)+(-80)].80:2= -3240
=>-1-2-3-4-5-6+......-80=-3240
b,1-2+3-4+5-6+......+2021-2022
=(1-2)+(3-4)+(5-6)+...+(2021-2022)
=(-1)+(-1)+(-1)+...+(-1)
Tổng số cặp là:
(2022-1+1):2=1011 cặp
-1.1011=-1011
=>1-2+3-4+5-6+......+2021-2022= -1011
c, Đề bài sai
d,-4-8-12-16-.......-2020
=-4+(-8)+(-12)+(-16)+...+(-2020)
Khoảng cách giữa các số:-4-(-8)=4
Tổng các số hạng:[-4-(-2020]:4+1=505 số
Tổng:[-4+(-2020)].505:2=-511060
=>-4-8-12-16-.......-2020=-511060
\(\left(\frac{1}{2}\right)^5.2^5-\left(\frac{1}{2019}-\frac{1}{2020}+\frac{1}{2021}\right)\)
\(=\frac{1^5}{2^5}.2^5-\left(\frac{1}{2019}-\frac{1}{2020}+\frac{1}{2021}\right)\)
\(=\frac{1^5.2^5}{2^5}-\left(\frac{2020.2021}{2019.2020.2021}-\frac{2019.2021}{2019.2020.2021}+\frac{2019.2020}{2019.2020.2021}\right)\)
\(=1^5-\left(\frac{2020.2021-2019.2021+2019.2020}{2019.2020.2021}\right)\)
\(=1-\left(\frac{\left(2020-2019\right).2021+2019.2020}{2019.2020.2021}\right)\)
\(=1-\left(\frac{1.2021+2019.2020}{2019.2020.2021}\right)\)
\(=1-\left(\frac{1+2020+2019.2020}{2019.2020.2021}\right)\)
\(=1-\left(\frac{1+2020.\left(1+2019\right)}{2019.2020.2021}\right)\)
\(=1-\left(\frac{1+2020.2020}{2019.2020.2021}\right)\)
\(=1-\frac{1+2020}{2019.2021}\)
\(=1-\frac{2021}{2019.2021}\)
\(=1-\frac{1}{2019}\)
\(=\frac{2019}{2019}-\frac{1}{2019}=\frac{2018}{2019}\)
Chúc bạn học tốt
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(A=1-\frac{1}{2020}\)
\(A=\frac{2019}{2020}\)
\(B=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)
\(2B=\frac{2}{1.3}+\frac{2}{3.5}=\frac{2}{5.7}+...+\frac{2}{2017.2019}\)
\(2B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}=\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\)
\(2B=1-\frac{1}{2019}\)
\(2B=\frac{2018}{2019}\)
\(B=\frac{2018}{2019}:2=\frac{1009}{2019}\)
:)M=\(\left[1+\left(-2\right)\right]+\left[3+\left(-4\right)\right]+...+\left[2019+\left(-2020\right)\right]+2021\)
M=(-1)+(-1)+...+(-1)+2021
M=1010.(-1)+2021
M=(-1010)+2021
M=1011
10 tick đê