K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: góc MIC+góc MEC=180 độ

=>MICE nội tiếp

2: Xét ΔMCQ và ΔMAC có

góc MCQ=góc MAC

góc CMQ chung

=>ΔMCQ đồng dạng với ΔMAC

=>MC^2=MQ*MA

 

1: góc MIC=góc MEC=90 độ

=>MIEC nội tiếp

2: Xet ΔMCQ và ΔMAC có

góc MCQ=góc MAC

góc CMQ chung

=>ΔMCQ đồng dạng với ΔMAC

=>MC/MA=MQ/MC

=>MC^2=MQ*MA

a) Xét tứ giác ECOM có 

\(\widehat{OME}\) và \(\widehat{OCE}\) là hai góc đối

\(\widehat{OME}+\widehat{OCE}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ECOM là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

1 tháng 4 2021

undefined

3 tháng 6 2021

mọi người giúp mình nha

cảm ơn nhiều ạ ^^

3 tháng 6 2021

a. xét MEFC có:

∠MEC=90 (ME⊥BC)

∠MFC=90 (MF⊥AC)

⇒∠MEC=∠MFC=90

⇒tứ giác MEFC nội tiếp

xét tứ giác DBEM có

∠BDM+∠BEM=180

⇒ tứ giác DBEM nội tiếp⇒∠DBM=∠DEM

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0
10 tháng 6 2015

a, (O): góc BAC=90 độ (góc nt chắn nửa đường tròn).

(I): góc AEH=90(góc nt chắn nửa đường tròn). góc ADH=90(góc nt chắn nửa đường tròn) => tg AEHD là hcn(có 3 góc vuông)

b) (I): góc ADE=góc AHE( nt cùng chắn cung AE)

ta lại có:góc AHE=góc ABH( cùng phụ với góc BAH.) => ADE=ABH

=> tg BEDC nội tiếp (góc trong tại 1 đỉnh = góc ngoài tại đỉnh đối diện)

c, tg AEHD là hcn; AH cắt AD tại I => IA=IH=IE=ID

tam giác ADH: DI là trung tuyến

tam giác: AMH: MI là trung tuyến => D,M,I thẳng hàng. mà E,M,I thẳng hàng=> D,M,E thẳng hàng.

Nhớ L I K E nha

 

 

12 tháng 5 2021

answer-reply-imageđây nha bn

tk cho mk nha

9 tháng 4 2016

giải câu c, d đi