K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2023

a: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

b: Ta có: ADHE là hình chữ nhật

=>AD//HE và AD=HE

Ta có: AD//HE

F\(\in\)HE

Do đó: AD//HF

Ta có: AD=HE

HE=EF

Do đó: AD=EF

Xét tứ giác ADEF có

AD//EF

AD=EF

Do đó: ADEF là hình bình hành

c: ta có: AEHD là hình chữ nhật

=>\(\widehat{AED}=\widehat{AHD}\)

mà \(\widehat{AHD}=\widehat{ABC}\left(=90^0-\widehat{ACB}\right)\)

nên \(\widehat{AED}=\widehat{ABC}\)

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MB=MC

Ta có: MA=MC

=>\(\widehat{MAC}=\widehat{MCA}\)

Ta có: \(\widehat{AED}+\widehat{MAC}\)

\(=\widehat{ABC}+\widehat{ACB}=90^0\)

=>AM\(\perp\)ED

mà ED//AF(ADEF là hình bình hành)

nên AM\(\perp\)AF

14 tháng 12 2023

a) Tứ giác ADHE là hình chữ nhật.

- Vì AD vuông góc với AB và HE vuông góc với AC (do HD và HE lần lượt là đường cao của tam giác ABC), nên ADHE là hình chữ nhật.

 

b) Lấy điểm F sao cho E là trung điểm của HF.

- Vì E là trung điểm của HF, nên EF = FH.

- Ta cũng có HE = EA (do E là trung điểm của HF và EA).

- Từ đó, ta có EF = FH = HE = EA.

- Vậy, tứ giác ADEF có các cạnh đối diện bằng nhau, là đặc điểm của hình bình hành.

 

c) Gọi M là trung điểm của BC. Chúng ta cần chứng minh AM vuông góc với AF.

- Ta biết rằng E là trung điểm của HF (theo phần b).

- Vì M là trung điểm của BC, nên BM = MC.

- Từ đó, ta có AM = BM = MC.

- Vì EF = FH = HE = EA (theo phần b), nên tứ giác ADEF là hình bình hành.

- Do đó, ta có AF song song với DE.

- Vì AM = MC và AF song song với DE, nên AM vuông góc với AF.

 

Vậy, ta đã chứng minh được AM vuông góc với AF.

a: Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó: ADHE là hình chữ nhật

b: Xét tứ giác AFDH có 

DH//AF

DH=AF(=AE)

Do đó: AFDH là hình bình hành

a: Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó: ADHE là hình chữ nhật

b: Xét tứ giác ADEN có 

NE//AD
NE=AD
Do đó: ADEN là hình bình hành

18 tháng 12 2022

a: Xét tứ giác ADHE có

góc ADH=góc AEH=góc DAE=90 độ

nên ADHE là hình chữ nhật

b: Xét tứ giác AEDF có

AE//DF

AE=DF

Do đó: AEDF là hình bình hành

Bài 1: 

a: Xét tứ giác ADME có 

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

Do đó: ADME là hình chữ nhật

Suy ra: AM=DE

b: Xét ΔABC có 

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

Xét ΔABC có 

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

Xét ΔABC có 

M là trung điểm của BC

D là trung điểm của AB

Do đó: MD là đường trung bình

=>MD//CE và MD=CE
hayDMCE là hình bình hành

a: Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)

Do đó: ADHE là hình chữ nhật

19 tháng 12 2016

a)Xét tứ giác ABDC : 
AM = MD ; BM = MC 
=>Tứ giác ABDC là hình bình hành 
Mà góc BAC = 90 = >Tứ giác ABDC là hcn 
b)Xét tam giác AID : 
AH= HI ; AM = MD (gt) 
=> HM song song ID ( đường tb) 
=>tứ giác BIDC la ht 
AC la trung truc AI = > tam giac ABI can tai B 
=> AB = BI ma AB = DC ( ABDC la hcn )=> BI = DC 
hay BIDC la hinh thang can 
c) Ta có góc ACB = góc AHM = góc AEF 
góc BAM = góc ABM 
mà góc ABM + góc ACM = 90 => góc AEF + góc BAM = 90 độ hay AM vuông góc EF ( đccm)

19 tháng 12 2016

tks bn

a: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

Do đó: AEHF là hình chữ nhật