Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)
\(=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5\)
\(=x^5-y^5+\left(x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(x^2y^3-x^2y^3\right)+\left(xy^4-xy^4\right)\)
\(\Rightarrow\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)
b)\(\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)
\(=a^3+b^3+\left(-a^2b+a^2b\right)+\left(ab^2-ab^2\right)\)
\(\Rightarrow\)\(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\)
a) (x - y)(x4 + x3y + x2y2 + xy3 + y4)
= x(x4 + x3y + x2y2 + xy3 + y4) - y(x4 + x3y + x2y2 + xy3 + y4)
= x5 + x4y + x3y2 + x2y3 + xy4 - x4y - x3y2 - x2y3 - xy4 - y5
= x5 - y5
b) (a + b)(a2 - ab + b2)
= a(a2 - ab + b2) + b(a2 - ab + b2)
= a3 - a2b + ab2 + a2b - ab2 + b3
= a3 + b3
2. CMR:
a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5-y^5\)
Ta có: VT=\(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5=x^5-y^5=VP\)=> đpcm.
b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5+y^5\)
Ta có: VT=\(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5=x^5+y^5=VP\)
=> đpcm.
c. \(\left(x+a\right)\left(x+b\right)=x^2+\left(a+b\right)x+ab\)
\(\Leftrightarrow x^2+bx+ax+ab=x^2+ax+bx+ab\) (đúng)
=> đpcm.
a: \(=\dfrac{27a^6b^3\cdot a^2b^6}{a^8b^8}=27b\)
b: \(=3y^2-5x^2y^3-2y^2+3x^2y^3\)
\(=y^2-2x^2y^3\)
c: \(=6x-y+2x^2+3y-2x^2+x\)
\(=7x+2y\)
d: \(=x-y+2y^2-6xy+\dfrac{10x^2}{y}\)
Ta có : VP = \(x^4-y^4\)
\(=\left(x^2\right)^2-\left(y^2\right)^2\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
Vp\(=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\) = VT
Vậy \(x^4-y^4\) \(=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\) (đpcm)
\(VT=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)
\(=x\left(x^3+x^2y+xy^2+y^3\right)-y\left(x^3+x^2y+xy^2+y^3\right)\)
\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)
\(=\left(x^4-y^4\right)+\left(x^3y-x^3y\right)+\left(x^2y^2-x^2y^2\right)+\left(xy^3-xy^3\right)\)
\(=x^4-y^4=VP\)
\(VT=\left(a+b\right)^2-\left(a-b\right)^2=4ab\)
\(=\left(a^2+2ab+b^2\right)-\left(a^2-2ab+b^2\right)\)
\(=a^2+2ab+b^2-a^2+2ab-b^2\)
\(=\left(a^2-a^2\right)-\left(b^2+b^2\right)+\left(2ab+2ab\right)\)
\(=4ab=VP\)
Câu a :
\(VT=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)
Nhân 2 vế lại ta được \(x^4-y^4=VP\)
\(\Rightarrowđpcm\)
Câu b :
\(VT=\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b-a+b\right)\left(a+b+a-b\right)=2b.2a=4ab=VP\)
\(\Rightarrowđpcm\)
a, mình nghĩ đề là cm đẳng thức nhé
\(VT=\left(5x^4-3x^3+x^2\right):3x^2=\frac{5x^4}{3x^2}-\frac{3x^3}{3x^2}+\frac{x^2}{3x^2}=\frac{5}{3}x^2-x+\frac{1}{3}=VP\)
Vậy ta có đpcm
b, \(VT=\left(5xy^2+9xy-x^2y^2\right):\left(-xy\right)=\frac{5xy^2}{-xy}+\frac{9xy}{-xy}-\frac{x^2y^2}{-xy}\)
\(=-5y-9+xy=VP\)
Vậy ta có đpcm
c, \(VT=\left(x^3y^3-x^2y^3-x^3y^2\right):x^2y^2=\frac{x^3y^3}{x^2y^2}-\frac{x^2y^3}{x^2y^2}-\frac{x^3y^2}{x^2y^2}=xy-y-x=VP\)
Vậy ta có đpcm
a: \(=3y^2-5x^2y^3-2y^2+3x^2y^3=y^2-2x^2y^3\)
b: \(=6x-y+2x^2+3y^2-2x^2+x=7x-y+3y^2\)
c: \(=x-y+4y^2-6xy+\dfrac{10x^2}{y}\)
\(a.\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)
\(=3y^2-5x^2y^3-2y^2+3x^2y^3\)
\(=y^2-2x^2y^3\)
\(b.\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
\(=6x-y+2x^2+3y-2+x\)
\(=2x^2+7x+2y-2\)
\(c.\left(x^2-xy\right):x+\left(6x^2y^5-9x^3y^4+15x^4y^3\right):\dfrac{3}{2}x^2y^3\)
\(=x-y+4y^2-6xy+10x^2\)
a. \(\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)
\(\Rightarrow x^5+x^4y+x^3y^2+x^2y^3+y^5-yx^4-x^3y^2-x^2y^3-xy^4-y^5=VP\)
\(\Rightarrow dpcm\)
b. \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)
\(\Rightarrow x^5-x^4y+x^3y^2-x^2y^3+xy^4+yx^4-x^3y^2-xy^4+y^5=VP\)
\(\Rightarrow dpcm\)
c.d làm tương tự
Bài làm
a) Biến đổi vế trái, ta được:
\(VT=\left(x-y\right)\left(x^4+x^3y+x^2y^2+xy^3+y^4\right)\)
\(=x^5+x^4y+x^3y^2+x^2y^3+xy^4-x^4y-x^3y^2-x^2y^3-xy^4-y^5\)
\(=\left(x^5-y^5\right)+\left(x^4y-x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(x^2y^3-x^2y^3\right)+\left(xy^4-xy^4\right)\)
\(=x^5-y^5=VP\left(đpcm\right)\)
b) Biến đổi vế trái, ta có:
\(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)
\(=\left(x^5+y^5\right)+\left(-x^4y+x^4y\right)+\left(x^3y^2-x^3y^2\right)+\left(-x^2y^3+x^2y^3\right)+\left(xy^4-xy^4\right)\)
\(=x^5+y^5=VP\left(đpcm\right)\)
c) Biến đổi vế trái, ta có:
\(VT=\left(a+b\right)\left(a^3-a^2b+ab^2-b^3\right)\)
\(=a^4-a^3b+a^2b^2-ab^3+a^3b-a^2b^2+ab^3-b^4\)
\(=\left(a^4-b^4\right)+\left(-a^3b+a^3b\right)+\left(a^2b^2-a^2b^2\right)+\left(-ab^3+ab^3\right)\)
\(=a^4-b^4=VP\left(đpcm\right)\)
d) Đây là hằng đẳng thức, như vế phải hình như bạn viết bị sai, mik sửa là vế phải nha.
\(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\)
Biến đổi vế trái, ta có:
\(VT=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)
\(=\left(a^3+b^3\right)+\left(-a^2b+a^2b\right)+\left(ab^2-ab^2\right)\)
\(=a^3+b^3=VP\left(đpcm\right)\)