K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: CD vuông góc AD

CD vuông góc SA

=>CD vuông góc (SAD)

b: (SD;(ABCD))=(DS;DA)=góc SDA

tan SDA=SA/AD=1/2

=>góc SDA=27 độ

a: CD vuông góc AD

CD vuông góc SA

=>CD vuông góc (SAD)

b: (SD;(ABCD))=(DS;DA)=góc SDA

tan SDA=SA/AD=1/2

=>góc SDA=27 độ

NV
29 tháng 4 2021

Bạn kiểm tra lại đề,

1. ABCD là hình thang vuông tại A và B hay A và D? Theo dữ liệu này thì ko thể vuông tại B được (cạnh huyền DC nhỏ hơn cạnh góc vuông AB là cực kì vô lý)

2. SC và AC cắt nhau tại C nên giữa chúng không có khoảng cách. (khoảng cách bằng 0)

29 tháng 4 2021

Nguyễn Việt Lâm

e xin loi a

ABCD là hình thang vuông tại A và D

còn đoạn sau khoảng cách giữa 2 đt SC và AC thì e kh biet no sai o đau

anh giup em vs ah

17 tháng 3 2017

ĐÁP ÁN: B

1: AC=căn a^2+a^2=a*căn 2

=>SC=căn SA^2+AC^2=a*căn 8

SB=căn AB^2+SA^2=a*căn 7

Vì SB^2+BC^2=SC^2

nên ΔSBC vuông tại B

=>SB vuông góc BC

a: BC vuông góc SA
BC vuông góc AB

=>CB vuông góc (SBA)

DC vuông góc AD

DC vuông góc SA

=>DC vuông góc (SAD)

=>(SDC) vuông góc (SAD)

b: (SC;(SAD))=(SC;SD)=góc CSD

\(SD=\sqrt{SA^2+AD^2}=2a\sqrt{7}\)

\(AC=\sqrt{\left(2a\right)^2+3a^2}=a\sqrt{7}\)

\(SC=\sqrt{SA^2+AC^2}=4a\sqrt{2}\)

\(cosCSD=\dfrac{SC^2+SD^2-DC^2}{2\cdot SC\cdot SD}=\dfrac{32a^2+28a^2-4a^2}{2\cdot2a\sqrt{7}\cdot4a\sqrt{2}}=\dfrac{\sqrt{14}}{4}\)

=>góc CSD=21 độ

(SC;(ABCD))=(CS;CA)=góc SCA

tan SCA=SA/AC=5/căn 7

=>góc SCA=62 độ

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Ta có:

\(\begin{array}{l}\left. \begin{array}{l}SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AB\\AB \bot A{\rm{D}}\end{array} \right\} \Rightarrow AB \bot \left( {SA{\rm{D}}} \right)\\ \Rightarrow d\left( {B,\left( {SA{\rm{D}}} \right)} \right) = AB = a\end{array}\)

b) Kẻ \(AH \bot SC \Rightarrow d\left( {A,SC} \right) = AH\)

Tam giác \(ABC\) vuông tại \(B\)\( \Rightarrow AC = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2 \)

Tam giác \(SAC\) vuông tại \(A\)\( \Rightarrow SC = \sqrt {S{A^2} + A{C^2}}  = a\sqrt 3 \)

Tam giác \(SAC\) vuông tại \(A\) có đường cao \(AH\)\( \Rightarrow AH = \frac{{SA.AC}}{{SC}} = \frac{{a\sqrt 6 }}{3}\)

Vậy \(d\left( {A,SC} \right) = \frac{{a\sqrt 6 }}{3}\).