K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2016

ta có:

4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4

= 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]

= (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)

31 tháng 8 2016

biet rui con hoi lam j

11 tháng 1 2016

 3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)] 
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)] 
=n(n+1)(n+2) 
=>S 

Biểu thức này dùng để tính tổng 1^2+..+n^2 rất tiện và thực tế cũng là ket quả của hệ quả trên. 
dùng cách thức tương tự có thể tính S=1.2.3+...+ n(n+1)(n+2) từ đó suy ra tổng 1^3+...+n^3 

dựa vào nhé

11 tháng 1 2016

 

 A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

=>3A=1.2.3+2.3.3+3.4.3+n.(n+1).3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]

=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+....+n.(n+1)(n+2)-(n-1).n.(n+1)

=n.(n+1).(n+2)-0.1.2

=n.(n+1).(n+2)

=>A=n.(n+1)(n+2)/3

 

 B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)

=>4B=1.2.3.4+2.3.4.4+....+(n-1)n(n+1).4

=1.2.3.(4-0)+2.3.4.(5-1)+...+(n-1)n(n+1)[(n+2)-(n-2)]

=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+(n-1)n(n+1)(n+2)-(n-2)(n-1)n(n+1)

=(n-1)n(n+1)(n+2)-0.1.2.3

=(n-1)n(n+1)(n+2)

=>B=(n-1)n(n+1)(n+2)/4

3 tháng 10 2018

4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4

= 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]

= (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)

\(\Leftrightarrow B=\frac{\left(n-1\right).n.\left(n+1\right).\left(n+2\right)}{4}\)

22 tháng 5 2021

4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4

4B = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]

4B = (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)

\Rightarrow B = \frac{{\left( {n - 1} \right).n.\left( {n + 1} \right)\left( {n + 2} \right)}}{4}

17 tháng 5 2016

Ta có: B = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

   =>  3A = 1.2.(3-0) + 2.3.(4-1) + .... + n.(n+1).(n+2 - n+1)

   => 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + n.(n+1).(n+2)

  =>  3A = n.(n+1).(n+2)

  = > A = 

8 tháng 1 2016

A=\(x = {n(n+1)(n+2){} \over 3}\)

 

8 tháng 1 2016

S=1.2+2.3+3.4+.............+n(n+1)

=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1)
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n)

Ta có các công thức:

1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6

1 + 2 + 3 + ...+ n = n(n+1)/2

Thay vào ta có:

S = n(n+1)(2n+1)/6 + n(n+1)/2

=n(n+1)/2[(2n+1)/3 + 1]

=n(n+1)(n+2)/3

6 tháng 5 2017

Bài 1 :

\(A=1\cdot2+2\cdot3+3\cdot4+...+n\cdot\left(n+1\right)\)

\(\Rightarrow3A=1\cdot2\cdot3+2\cdot3\cdot3+3\cdot4\cdot3+...+n\cdot\left(n+1\right)\cdot3\)

\(=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+n\cdot\left(n+1\right)\cdot\left[\left(n+2\right)-\left(n-1\right)\right]\)

\(=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+2\cdot3\cdot4-3\cdot4\cdot5+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)

\(=n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

6 tháng 5 2017

Bài 1.

A = 1.2 + 2.3 + 3.4 + ... + n.(n + 1)

3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + n.(n + 1).3

3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + n.(n + 1).(n + 2 - n - 1)

3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + n.(n + 1).(n + 2 ) - (n - 1).n.(n + 1)

3A = n.(n + 1).(n + 2)

A = n.(n + 1).(n + 2) : 3

Bài 2. 

B = 1.2.3 + 2.3.4 + ... + (n - 1).n.(n + 1)

4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1).n.(n + 1).4

4B = 1.2.3.4 + 2.3.4.(5 - 1) + .... + (n - 1).n.(n + 1).(n + 2 - n - 2)

4B = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1).n.(n + 1).(n + 2) - (n - 2).(n - 1).n.(n + 1)

4B = (n - 1).n.(n + 1).(n + 2)

B = (n - 1).n.(n + 1).(n + 2) : 4

Xong rồi nhé anh !

11 tháng 4 2020

B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)

4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4

4B = 1.2.3.4 + 2.3.4.(5 - 1) + 3.4.5.(6 - 2) + .... + (n - 1).n.(n + 1).[(n + 2) - (n - 2)]

4B = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1)

4B = (n-1)n(n+1)(n+2)

B = (n-1)n(n+1)(n+2) : 4

12 tháng 4 2020

Ta có : 4B =4 . ( 1.2.3 + 2.3.4 + ...+ (n - 1 )n( n + 1 )

<=> 4B = 1.2.3 .( 4 - 0 ) + 2.3.4 .( 5- 1 ) + ... + ( n - 1 ) n ( n + 1 ) [ ( n + 2 ) - ( n - 2 ) ]

<=> 4B = 1 . 2 . 3 . 4 +2 . 3. 4 .5 -1.2.3 .4 + ... + ( n- 1 ) n ( n + 1 ) ( n + 2 )- ( n-1)( n+1).n/( n- 2 )

<=> 4B = ( n-  1 ).( n+1 ).n.( n + 2 )

<=> B = \(\frac{\left(n-1\right)\left(n+1\right)n\left(n+2\right)}{4}\)

Vậy B = \(\frac{\left(n-1\right)\left(n+1\right)n\left(n+2\right)}{4}\)

18 tháng 12 2015

tick mk lên 70 điểm với các bạn

3 tháng 12 2016

4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4

= 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]

= (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)

=> \(B=\frac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)

k cho mik nha!

                                                                Giải          

Cách 1:

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó: 

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a= 1.2.3 - 0.1.2
   a2 = 2.3 → 3a2 = 2.3.3 → 3a= 2.3.4 - 1.2.3
   a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
   …………………..
   an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
   an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

Cách 2: Ta có

3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2) 

* Tổng quát hoá ta có:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …

Ta dễ dàng chứng minh công thức trên như sau:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)