Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 30 < ab + ba + ac < 289 (Ở đây mình không cần biết là các số có chữ số nào khác nhau hay không, mình chỉ cần lấy 10 x số số hạng và 99 x số số hạng là mình sẽ giới hạn được đáp án)
Do 30 < ab + ba + ac < 289 và tổng là các số nguyên tố nên ta có các tổng sau: 36; 49; 64; 81; 100; 121; 144; 169; 196; 289.
Ta xét tổng thì ta lại có: 10a + b + 10b + c + 10c + a = 11a + 11b + 11c = 11(a + b + c)
Suy ra tổng chia hết cho 11 => Tổng của chúng chỉ còn là 121
Bây giờ ta có ab + ba + ac = 121; a + b + c = 11 và các số ab, bc, ca là các số nguyên tố
Vậy có các kết quả đúng là 13 + 37 + 71 = 121 với a = 1; b = 3; c = 7
và 17 + 73 + 31 = 121 với a = 1; b = 7; c = 3
và các đáp án đảo ngược khác như a = 3; b = 1; c = 7 ;...
Bài 1
Ta có: \(a.b=2018^{2018}\)
\(2018\equiv2\left(md3\right)\)
\(2018^{2018}\equiv2^{2018}\left(md3\right)\)
\(2018\equiv\left(2^2\right)^{1009}=4^{1009}\)
Mà \(4\equiv1\left(md3\right)\Rightarrow4^{1009}\equiv1\left(md3\right)\)
\(\Rightarrow a.b=2018^{2018}\equiv1\left(md3\right)\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}a\equiv1\left(md3\right)\\b\equiv1\left(md3\right)\end{cases}}\\\hept{\begin{cases}a\equiv2\left(md3\right)\\b\equiv2\left(md3\right)\end{cases}}\end{cases}}\)
Khi đó:\(\orbr{\begin{cases}a+b\equiv2\left(md3\right)\\a+b\equiv1\left(md3\right)\end{cases}}\)
\(\Rightarrow a+b\)ko chia hết cho 3\(\Rightarrow a+b\)ko chia hết cho 2019
Vậy \(a+b\)ko chia hết cho 2019
Xin lỗi bạn nha ,máy mình bị liệt 1 s chữ , md là mod nha ! Hk t !
Trong tập hợp số nguyên không có khái niệm hai số nguyên tố cùng nhau. Trong bài này phải nói trị tuyệt đối của chúng đôi một nguyên tố cùng nhau.
Không thể có \(\left|c\right|>1\) vì c có ít nhất một ước nguyên tố \(p\ge2\)
Do đó p phải là ước của a hoặc b. Vô lý vì (a;c) = ( b;c) = 1; từ đó suy ra \(c\in\left\{-1;1\right\}\)
*TH1 : \(c=-1\)
\(\Rightarrow-\left(a+b\right)=ab\)
\(\Rightarrow ab-\left[-\left(a+b\right)\right]=0\)
\(\Rightarrow ab+a+b+1=0+1\)
\(\Rightarrow\left(ab+a\right)+\left(b+1\right)=1\)
\(\Rightarrow a\left(b+1\right)+\left(b+1\right)=1\)
\(\Rightarrow\left(a+1\right)\left(b+1\right)=1\)
Do đó suy ra \(a+1=b+1=-1\) ( Chúng không thể bằng 1 vì nếu như vậy a=b=0 )
\(\Rightarrow a=b=-2\)
Do đó (a;b) = 2 \(\ne\)1 ( trái với giả thiết )
*TH2 : \(c=1\)
\(\Rightarrow a+b=ab\)
\(\Rightarrow ab-\left(a+b\right)+1=0+1=1\)
\(\Rightarrow ab-a-b+1=1\)
\(\Rightarrow\left(ab-a\right)-\left(b-1\right)=1\)
\(\Rightarrow a\left(b-1\right)-\left(b-1\right)=1\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)=1\)
\(\Rightarrow a-1=b-1=1\) ( chúng không thể bằng -1 vì như vậy thì a = b = 0 )
\(\Rightarrow a=b=2\)
\(\Rightarrow\left(a;b\right)=2\ne1\) (trái với giả thiết )
Do đó không tồn tại a, b, c thỏa mãn đề bài.