K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 1 2022

\(14x^2y-21xy^2+28x^2y=7xy\left(2x-3y+4x\right)=21xy\left(2x-y\right)\)

\(x\left(x+y\right)-5x-5y=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\)

\(10x\left(x-y\right)-8\left(y-x\right)=10x\left(x-y\right)+8\left(x-y\right)=2\left(x-y\right)\left(5x+4\right)\)

\(\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1-x-1\right)\left(3x+1+x+1\right)=2x\left(4x+2\right)=4x\left(2x+1\right)\)

2 tháng 1 2022

help

 

2 tháng 1 2022

tách nhỏ câu hỏi ra bạn dài quá

28 tháng 12 2021

tách nhỏ câu hỏi ra

28 tháng 12 2021

a,=5xy(x-2y)

b,=3(x+3)+(x-3)(x+3)

=(x+3)+x

c=xy(x-y)+z(x-y)

  =(x-y)(xy+z)

d=7xy(2x-3y+4xy)

e,=x(x+y)-5(x+y)

  =  (x+y)(x-5)

f, =10x(x-y)+8(x-y)

   =(x-y)(10x+8)

g,=(3x+1-x+1)(3x+1+x+1)

=2x(4x+2)

h,=x^2-3x-2x+6

   = x(x-3)-2(x-3)

   =(x-3)(x-2)

Bài 1:

a: \(3x-6y=3\cdot x-3\cdot2y=3\left(x-2y\right)\)

b: \(14x^2y-21xy^2+28x^2y^2\)

\(=7xy\cdot2x-7xy\cdot3y+7xy\cdot4xy\)

\(=7xy\left(2x-3y+4xy\right)\)

c: \(10x\left(x-y\right)-8y\cdot\left(y-x\right)\)

\(=10x\left(x-y\right)+8y\left(x-y\right)\)

\(=\left(x-y\right)\left(10x+8y\right)\)

\(=\left(2\cdot5x+2\cdot4y\right)\left(x-y\right)\)

\(=2\left(5x+4y\right)\left(x-y\right)\)

bài 2:

a: Đề thiếu vế phải rồi bạn

b: \(x^3-13x=0\)

=>\(x\left(x^2-13\right)=0\)

=>\(\left[{}\begin{matrix}x=0\\x^2-13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=13\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=0\\x=\pm\sqrt{13}\end{matrix}\right.\)

8 tháng 12 2023

Bài 1:

a, $3x-6y$

$=3(x-2y)$

b, $14x^2y-21xy^2+28x^2y^2$

$=7xy(2x-3y+4xy)$

c, $10x(x-y)-8y(y-x)$

$=10x(x-y)-8y[-(x-y)]$

$=10x(x-y)+8y(x-y)$

$=(x-y)(10x+8y)$

$=2(x-y)(5x+4y)$

Bài 2:

a, Đề thiếu rồi bạn nhé.

b, \(x^3-13x=0\)

\(\Rightarrow x\left(x^2-13\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-13=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x^2=13\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{13}\\x=-\sqrt{13}\end{matrix}\right.\)

26 tháng 12 2021

d: \(=\left(x+1-5\right)\left(x+1+5\right)=\left(x-4\right)\left(x+6\right)\)

26 tháng 10 2021

\(a,=x\left(4x^2-1\right)=x\left(2x-1\right)\left(2x+1\right)\\ b,=2\left(3x-2\right)-x\left(3x-2\right)=\left(2-x\right)\left(3x-2\right)\\ c,=x\left(y-1\right)-\left(y-1\right)=\left(x-1\right)\left(y-1\right)\\ d,=\left(y+2\right)^2-4x^2=\left(y+2-2x\right)\left(y+2+2x\right)\\ e,=x^2-x-2x+2=\left(x-1\right)\left(x-2\right)\)

26 tháng 10 2021

a) \(4x^3-x^2=x^2\left(4x-1\right)\)

b) \(6x-4+x\left(2-3x\right)=2\left(3x-2\right)-x\left(3x-2\right)=\left(2-x\right)\left(3x-2\right)\)

c) \(xy+1-x-y=\left(xy-x\right)-\left(y-1\right)=x\left(y-1\right)-\left(y-1\right)=\left(x-1\right)\left(y-1\right)\)

d) \(y^2-4x^2+4y+4=\left(y^2+4y+4\right)-4x^2=\left(y+2\right)^2-\left(2x\right)^2=\left(y-2x+2\right)\left(y+2x+2\right)\)

e) \(x^2-3x+2=\left(x^2-x\right)-\left(2x-2\right)=x\left(x-1\right)-2\left(x-1\right)=\left(x-1\right)\left(x-2\right)\) 

23 tháng 10 2021

\(1,=3xy\left(x^2+2xy+y^2\right)=3xy\left(x+y\right)^2\\ 2,=7xy\left(2x-3y+4xy\right)\\ 3,=\left(x-1\right)\left(x^2-4\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\\ 4,=\left(x-y\right)\left(10x+8\right)=2\left(5x+4\right)\left(x-y\right)\\ 5,=\left(b-c\right)\left(8a-6b\right)=2\left(4a-3b\right)\left(b-c\right)\\ 6,=\left(x-1\right)\left(x^2-16\right)=\left(x-4\right)\left(x+4\right)\left(x-1\right)\\ 7,=x\left(x-y\right)+5\left(x-y\right)=\left(x-y\right)\left(x+5\right)\\ 8,=\left(3x+1-x-1\right)\left(3x+1+x+1\right)=2x\left(4x+2\right)=4x\left(2x+1\right)\\ 9,=\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)\\ 10,=\left(x-1\right)^2-4y^2=\left(x-2y-1\right)\left(x+2y-1\right)\)

26 tháng 12 2021

a: =5(2x+3y)

d: =(x+1-y)(x+1+y)

22 tháng 8 2023

a) \(x^4-y^4\)

\(=\left(x^2\right)^2-\left(y^2\right)^2\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)

b) \(x^2-3y^2\)

\(=x^2-\left(y\sqrt{3}\right)^2\)

\(=\left(x-y\sqrt{3}\right)\left(x+y\sqrt{3}\right)\)

c) \(\left(3x-2y\right)^2-\left(2x-3y\right)^2\)

\(=\left(3x-2y+2x-3y\right)\left(3x-2y-2x+3y\right)\)

\(=\left(5x-5y\right)\left(x+y\right)\)

\(=5\left(x-y\right)\left(x+y\right)\)

d) \(9\left(x-y\right)^2-4\left(x+y\right)^2\)

\(=\left[3\left(x-y\right)+2\left(x+y\right)\right]\left[3\left(x-y\right)-2\left(x+y\right)\right]\)

\(=\left(3x-3y+2x+2y\right)\left(3x-3y-2x-2y\right)\)

\(=\left(5x-y\right)\left(x-5y\right)\)

e) \(\left(4x^2-4x+1\right)-\left(x+1\right)^2\)

\(=\left(2x-1\right)^2-\left(x+1\right)\)

\(=\left(2x-1+x+1\right)\left(2x-1-x-1\right)\)

\(=3x\left(x-2\right)\)

f) \(x^3+27\)

\(=x^3+3^3\)

\(=\left(x+3\right)\left(x^2-3x+9\right)\)

g) \(27x^3-0,001\)

\(=\left(3x\right)^3-\left(0,1\right)^3\)

\(=\left(3x-0,1\right)\left(9x^2+0,3x+0,01\right)\)

h) \(125x^3-1\)

\(=\left(5x\right)^3-1^3\)

\(=\left(5x-1\right)\left(25x^2+5x+1\right)\)