Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Hình bạn tự vẽ nha)
a ,
Tứ giác AEMF có góc A = góc AME = góc AFM = 90 độ nên là hình chữ nhật .
b ,
Xét tam giác vuông ABC có đường trung tuyến AM ứng với cạnh huyền BC nên AM = MC = MB
Vì N là điểm đối xứng của M qua F nên MN vuông góc với AC và MF=NF .
-> AC là đường trung trực của MN
->MC = NC , AM = AN (áp dụng tính chất của đường trung trực ) mà AM = MC nên MC=NC=AM=AN .
-> Tứ giác MANC là hình thoi.
c ,
Để hình chữ nhật AEMF là hình vuông thì AE = AF (1)
Vì AM=BM và ME vuông góc với AB nên ME là đường trung trực của AB .
-> AE = EB (2)
Vì tứ giác MANC là hình thoi nên AF=FC (3)
Từ (1),(2) và (3) suy ra BE = FC (4)
Từ (1) và (4) suy ra : AE + BE = AF + FC
hay AB = AC
-> Tam giác ABC là tam giác vuông cân .
Vậy để tứ giác AEMF là hình vuông thì tam giác ABC là tam giác vuông cân .
https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem
Bạn xem tại link này nhé
Học tốt!!!!!!
a) AMBH là hình thoi (tứ giác có hai đường chéo vuông góc với nhau tại trung điểm mỗi đường)
Tương tự cũng có AMCK là hình thoi. AEMF là hình chữ nhật (tứ giác có ba góc vuông).
b) Áp dụng tính chất đối xứng trục ta có:
A H = A M , A 1 ^ = A 2 ^ và A K = A M , A 3 ^ = A 4 ^ .
Mà A 2 ^ + A 3 ^ = 900 Þ H, A, K thẳng hàng.
Lại có AH = AM = AK Þ H đối xứng với K qua A.
c) Nếu AEMF là hình vuông thì AM là đường phân giác của B A C ^ mà AM là đường trung tuyến.
Þ DABC vuông cân tại A.
\(a,\widehat{AHD}=\widehat{AED}=\widehat{HAE}=90^0\\ \Rightarrow AHDE\text{ là hcn}\\ b,\text{Vì }D\text{ là trung điểm }BC;DE\text{//}AB\left(\perp AC\right)\\ \Rightarrow E\text{ là trung điểm }AC\\ \text{Mà }E\text{ là trung điểm }DM\\ \Rightarrow ADCM\text{ là hbh}\)