K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: (4,0 điểm). Cho biểu thức a) Rút gọn biểu thức P.b) Tìm x để .c) Tìm giá trị nguyên của x để P nhận giá trị là số nguyên.Bài 2: (4,5 điểm). a) Giải phương trình : .b) Phân tích đa thức sau thành nhân tử: (x + 2)(2x2 – 5x) - x3 - 8c) Cho x, y, z là các số khác 0 và đôi một khác nhau thỏa mãn: . Tính giá trị của biểu thức: .Bài 3: (4,0 điểm). a) Tìm tất cả các cặp số nguyên (x; y) thỏa...
Đọc tiếp

Bài 1: (4,0 điểm). Cho biểu thức 
a) Rút gọn biểu thức P.
b) Tìm x để .
c) Tìm giá trị nguyên của x để P nhận giá trị là số nguyên.
Bài 2: (4,5 điểm). 
a) Giải phương trình : .
b) Phân tích đa thức sau thành nhân tử: (x + 2)(2x2 – 5x) - x3 - 8
c) Cho x, y, z là các số khác 0 và đôi một khác nhau thỏa mãn: . Tính giá trị của biểu thức: .
Bài 3: (4,0 điểm). 
a) Tìm tất cả các cặp số nguyên (x; y) thỏa mãn: y(x – 1) = x2 + 2
b) Chứng minh rằng nếu các số nguyên a, b, c thỏa mãn b2 – 4ac và b2 + 4ac đồng thời là các số chính phương thì abc  30. 
Bài 4: (6,0 điểm). 
1) Cho tam giác ABC vuông tại A. Lấy một điểm M bất kỳ trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E, EM cắt BC tại I.
a) Chứng minh EA.EB = ED.EC.
b) Chứng minh .
c) Chứng minh BM.BD + CM.CA = BC2.
d) Vẽ đường thẳng vuông góc với AB tại B, đường thẳng vuông góc với CD tại C, chúng cắt nhau tại K. Chứng minh MK luôn đi qua một điểm cố định khi M thay đổi.
e) Đặt BC = a; EC = b; BE = c; AD = a’; AI = b’; DI = c’.
Chứng minh .
2) Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất 
Bài 5: (1,5 điểm). Cho a, b, c > 0 thỏa mãn: a2 + b2 + c2 = 1. Chứng minh rằng 

(1)/(1-ab)+(1)/(1-bc)+(1)/(1-ca)<=9/2

 

2
8 tháng 4 2016

Bạn tự giải luôn đi!

8 tháng 4 2016

dài quá, ko muốn giải

1.Cho các số nguyên a,b,c thỏa mãn (a-b)^3+(b-c)^3+(c-a)^3=210. Tính A=/a-b/+/b-c/+/c-a/2.Cho tam giác ABC vuông ở A. Lấy một điểm M bất kì tren cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt BA tại E.a) C/m EA.EB=ED.ECb) c/m khi M di chyển trên cạnh AC thì tổng BM.BD+CM.CA có giá trị không đổi.c) Kẻ DH_I_BC(H thuộc BC). Gọi P;Q lần lượt là trung điểm của đoạn...
Đọc tiếp

1.Cho các số nguyên a,b,c thỏa mãn (a-b)^3+(b-c)^3+(c-a)^3=210. Tính A=/a-b/+/b-c/+/c-a/

2.Cho tam giác ABC vuông ở A. Lấy một điểm M bất kì tren cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt BA tại E.

a) C/m EA.EB=ED.EC

b) c/m khi M di chyển trên cạnh AC thì tổng BM.BD+CM.CA có giá trị không đổi.

c) Kẻ DH_I_BC(H thuộc BC). Gọi P;Q lần lượt là trung điểm của đoạn thẳng BH;DH. C/m CQ_I_PD

     (bài này mik làm dk câu a rồi.mn giúp mik câu b với câu c với!)

3.Tìm các số nguyên a và b sao cho A(x)=x^4+ax^2+b chia hết cho B(x)=x^2+x+1

4.C/m với mọi n thuộc Z thì n^2+5n+16 không chia hết cho 169

5.Cho a,b,c>0 t/m a+b+c=1. c/m ab/(a+1)+bc/(b+1)+ca/(c+1)<=1/4

6. Tìm đa thức f(x) biết f(x) chia x+2 dư 10; chia x-2 dư 24; chia x^2-4 được thương là --5x và còn dư.

7. C/m a(b-c)(b+c-a)^2+c(a-b)(a+b-c)^2=b(a-c)(a+c-b)^2

8. Cho hình vuông ABCD trên cạnh AB lấy E và trên cạnh AD lấy F sao cho AE=AF. Vẽ AH _I_ BF(H thuộc BF); AH cắt DC và BClaanf lượt tại M và N.

a) c/m AEMD là hình chữ nhật 

b) Biết diện tích tam giác BCH gấp 4 lần diện tích tam giác AEH. C/m AC=2EF

c) C/m 1/(AD^2)=1/(AM^2)+1/(AN^2)

3
14 tháng 2 2015

1. Bài này vế trái mình đã giải 1 lần rồi bạn.

Bạn dùng hằng đẳng thức A3 + B3 = (A + B)3 - 3AB(A + B) để có kết quả (a-b)(b-c)(c-a) = 70

70 = 2.5.7 do đó suy ra a-b=2, b-c=5, c-a=7. Suy ra A = 14.

Vì A là tổng 3 giá trị tuyệt đối nên nếu có hoán vị a-b, b-c, c-a thì kết quả vẫn ko đổi

 

14 tháng 2 2015

Bài 2 câu c mình cũng có giải rồi ko nhớ bạn của bạn nào. Bạn xem lại nhé

Còn câu b) : Gọi K là giao điểm của EM và BC thị EK vuông góc với BC vì M là trực tâm tam giác EBC. Sau đó bạn cm BM.BD = BK.BC ;  CM.CA = CK.CB. Bạn cộng từng vế là ra BM.BD + CM.CA = BC2 ko đổi 

Bài 1:1,Tìm m sao cho phương trình ẩn x :(m-1).x+3m-2=0 có nghiệm duy nhất thỏa man x> bằng 12,Giải phương trình x2+\(\frac{9x^2}{\left(x+3\right)^2}\)=40Bài 2::Cho hình vuông ABCD có 2 đường chéo cắt nhau tại O .Một đường thẳng kẻ qua A cắt cạnh BC tại M và cắt đường thẳng CD tại MN.Gọi K là giao của OM và DN .Chứng minh CK vuông góc BNBài 3: hình vuông ABCD và 13 đường thẳng bất kì có cùng tính chất là...
Đọc tiếp

Bài 1:

1,Tìm m sao cho phương trình ẩn x :(m-1).x+3m-2=0 có nghiệm duy nhất thỏa man x> bằng 1

2,Giải phương trình x2+\(\frac{9x^2}{\left(x+3\right)^2}\)=40

Bài 2::Cho hình vuông ABCD có 2 đường chéo cắt nhau tại O .Một đường thẳng kẻ qua A cắt cạnh BC tại M và cắt đường thẳng CD tại MN.Gọi K là giao của OM và DN .Chứng minh CK vuông góc BN

Bài 3: hình vuông ABCD và 13 đường thẳng bất kì có cùng tính chất là mỗi đường thẳng chia hình vuông thành 2 tứ giác có tỉ số diện tích là \(\frac{2}{5}\).Chứng minh rằng có 4 đường thẳng trong 13 đoạn thẳng đó cùng đi qua 1 điểm

Bài 4:Cho hình bình hành ABCD (AC>BD),hình chiếu vuông góc của C lên AB,AD lần lượt là E và F

Chúng minh:

1,CE.CD=CB.CF và △ABC đồng dạng △FCE

2,AB.AE+AD.AF=AC2

Bài 5:

1,Tìm các số nguyên x,y thảo mãn x2+8y2+4xy-2x-4y=4

2,Cho đa thức h(x) bậc 4 ,hệ số của 3 cao nhất là 1 ,biết h(1)=2;h(2)=5;H(4)=17;H(-3)=10.Tìm đa thức h(x)

Bài 6:Cho biểu thức :A=\(\left(\frac{x^3-1}{x^2-x}+\frac{x^2-4}{x^2-2x}-\frac{2-x}{x}\right):\frac{x+1}{x}\) với x≠0;x≠1;x≠2;x≠-1

1,Rút gọn biểu thức A

2,Tính A biết x thỏa mãn x3-4x2+3x=0

Bài 7:a,Cho a+b+c​​≠0 và a3+b3+c3=3abc.Tính N=\(\frac{a^{2016}+b^{2016}+c^{2016}}{\left(a+b+c\right)^{2016}}\)

b,Tìm số tự nhiên n để n2+4n+2013 là 1 số chính phương

Bai 8: Hình thang ABCD (AB//CD) có 2 đường chéo cắt nhau tại O .Đường thẳng qua O và song song với đáy AB cắt cạnh bên AD ,BC theo thứ tự ở M và N.

a, CMR OM=ON

b,CMR: \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{MN}\)

c,Biết SAOB=20152(đvị diện tích );SCOD=20162(đvị diện tích ).Tính SABCD

Bài 9:Cho a,b,c là các số dương .Chứng minh bất đẳng thức :

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}>hoacbang\frac{a+b+c}{2}\)

 

 

 

3
13 tháng 2 2020

áp dụng bđt cauchy-shwarz dạng engel

\(\text{ Σ}_{cyc}\frac{a^2}{b+c}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)\(=\frac{a+b+c}{2}\)

13 tháng 2 2020

Ta có hđt \(\text{ Σ}_{cyc}a^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Mà a+b+c khác 0 nên a = b = c

\(\Rightarrow N=1\)

1 (1,5đ): Phân tích các đa thức sau thành nhân tử:a.2x3 – 8x2 + 8x        b. 2x2 – 3x – 5        c. x2y – x3 – 9y + 9x2 (1đ): Tìm đa thức A biết:A.(2x – 5) = 2x3 – 7×2 + 9x – 103. (3,5đ): Cho biểu thức: P = [(2x – 1)/(x + 3) – x/(3 – x) – (3 – 10x)/(x2 – 9)] : [(x + 2)/(x – 3)]a.Rút gọn P và tìm điều kiện xác định của Pb. Tính giá trị của P khi x2 – 7x + 12 = 0c. Tìm các giá trị nguyên của x để P có giá...
Đọc tiếp

1 (1,5đ): Phân tích các đa thức sau thành nhân tử:

a.2x3 – 8x2 + 8x        b. 2x2 – 3x – 5        c. x2y – x3 – 9y + 9x

2 (1đ): Tìm đa thức A biết:

A.(2x – 5) = 2x3 – 7×2 + 9x – 10

3. (3,5đ): Cho biểu thức: P = [(2x – 1)/(x + 3) – x/(3 – x) – (3 – 10x)/(x2 – 9)] : [(x + 2)/(x – 3)]

a.Rút gọn P và tìm điều kiện xác định của P

b. Tính giá trị của P khi x2 – 7x + 12 = 0

c. Tìm các giá trị nguyên của x để P có giá trị nguyên dương

4. (3,5đ): Cho ∆ ABC có 3 góc nhọn và AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. K là điểm đối xứng với H qua M.

a. Chứng minh: Tứ giác BHCK là hình bình hành

b. Chứng minh: BK ⊥ AB và CK ⊥ AC

c. Gọi I là điểm đối xứng với H qua BC. Chứng minh: Tứ giác BIKC là hình thang cân.

d. BK cắt HI tại G. Tam giác ABC phải có thêm điều kiện gì để tứ giác GHCK là hình thang cân.

5 (0,5đ): Cho các số x, y thỏa mãn điều kiện:

2x2 + 10y2 – 6xy – 6x – 2y + 10 = 0

Hãy tính giá trị của biểu thức: A = [(x + y – 4)2018 – y2018]/x

 

1
12 tháng 12 2018

\(a,2x^3-8x^2+8x\)

\(=2x^3-4x^2-4x^2+8x\)

\(=\left(2x^3-4x^2\right)-\left(4x^2-8x\right)\)

\(=2x\left(x-2\right)-4x\left(x-2\right)\)

\(=\left(2x-4x\right)\left(x-2\right)\)

\(b,2x^2-3x-5=2x^2-5x+2x-5\)

\(=\left(2x^2-5x\right)+\left(2x-5\right)=x\left(2x-5\right)+\left(2x-5\right)\)

\(=\left(x+1\right)\left(2x-5\right)\)

\(c,x^2y-x^3-9y+9x\)

\(=\left(x^2y-x^3\right)-\left(9y-9x\right)\)

\(=x^2\left(y-x\right)-9\left(y-x\right)\)

\(=\left(x^2-9\right)\left(y-x\right)\)