K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2023

Bài 1 :

\(A=\dfrac{n+1}{n+2}\) có giá trị nguyên âm, dương khi

\(n+1⋮n+2\)

\(\Rightarrow n+1-\left(n+2\right)⋮n+2\)

\(\Rightarrow n+1-n-2⋮n+2\)

\(\Rightarrow-1⋮n+2\)

\(\Rightarrow n+2\in\left\{-1;1\right\}\)

\(\Rightarrow n\in\left\{-3;-1\right\}\left(n\in Z\right)\)

8 tháng 8 2023

Bài 2 :

\(1+\left(-\dfrac{1}{60}\right)+\dfrac{19}{120}< \dfrac{x}{36}+\left(-\dfrac{1}{60}\right)< \dfrac{58}{90}+\dfrac{59}{72}+\left(-\dfrac{1}{60}\right)\)

\(\Rightarrow1+\dfrac{19}{120}< \dfrac{x}{36}< \dfrac{58}{90}+\dfrac{59}{72}\)

\(\Rightarrow\dfrac{139}{120}< \dfrac{x}{36}< \dfrac{232}{360}+\dfrac{295}{360}\)

\(\Rightarrow\dfrac{417}{360}< \dfrac{10x}{360}< \dfrac{527}{360}\)

\(\Rightarrow417< 10x< 527\)

\(\Rightarrow10x\in\left\{420;430;440;450;460;470;480;490;500;510;520\right\}\)

\(\Rightarrow x\in\left\{42;43;44;45;46;47;48;49;50;51;52\right\}\)

13 tháng 8 2017

giúp mình đi

13 tháng 8 2017

<< nhắc lại một số tính chất cơ bản: 
* n² hoặc chia hết cho 3 hoặc chia 3 dư 1 
* n² hoặc chia hết cho 4 hoặc chia 4 dư 1 
* n^4 hoặc chia hết cho 5 hoặc chia 5 dư 1 
chứng minh đơn cũng đơn giản (xem như là các bài tập nhỏ) 
- - - 
1a) A = n²(n²-1) 
* vì n² chia 3 dư 0 hoặc 1 nên n² và n²-1 có một số chia hết cho 3 
=> n²(n²-1) chia hết cho 3 
* n² chia 4 dư 0 hoặc 1 nên n²(n²-1) có một số chia hết cho 4 
=> n²(n²-1) chia hết cho 4 
vì 3 và 4 là hai số nguyên tố cùng nhau nên A = n²(n²-1) chia hết cho 3.4 = 12 

1b) B = n²(n^4-1) 
* B = n²(n²-1)(n²+1) 
theo câu a thì có n²(n²-1) chia hết cho 12 => B chia hết cho 12 

* từ lí thuyết trên có n² chia 5 dư 0 hoặc 1 => n² và n²-1 có 1 số chia hết cho 5 
=> B chia hết cho 5 
do 12 và 5 là hai số nguyên tố cùng nhau => B chia hết cho 12*5 = 60 

c) C = mn(m^4-n^4) 
* nếu m, hoặc n có số chia hết cho 5 => C chia hết cho 5 
Xét m và n đều không chia hết cho 5, từ lí thuyết trên ta có: 
m^4 chia 5 dư 1 và n^4 chia 5 dư 1 => (m^4 - n^4) chia 5 dư 1-1 = 0 
tóm lại ta có C chia hết cho 5 

* C = mn(m^4-n^4) = mn(m²-n²)(m²+n²) 
nếu m hoặc n có số chẳn => C chia hết cho 2 
nếu m và n cùng lẻ => m² và n² là hai số lẻ => m²-n² chẳn 
tóm lại C chia hết cho 2 

* nếu m, n có số chia hết cho 3 => C chia hết cho 3 
nếu m và n đều không chia hết cho 3, từ lí thuyết trên ta có: 
m² và n² chia 3 đều dư 1 => m²-n² chia hết cho 3 
tóm lại C chia hết cho 3 

Thấy C chia hết cho 5, 2, 3 là 3 số nguyên tố 
=> C chia hết cho 5*2*3 = 30 

1d) D = n^5 - n = n(n^4-1) 
* nếu n chia hết cho 5 => D chia hết cho 5 
nếu n không chia hết cho 5 => n^4 chia 5 dư 1 => n^4-1 chia hết cho 5 
tóm lại ta có D chia hết cho 5 

* D = n(n²-1)(n²+1) = (n-1)n(n+1)(n²+1) 
tích của 3 số nguyên liên tiếp thì chia hết cho 6 (vì có đúng 1 số chia hết cho 3, và ít nhất 1 số chia hết cho 2) 
=> D chia hết cho 6 
D chia hết cho 2 số nguyên tố cùng nhau là 5 và 6 => D chia hết cho 5*6 = 30 

1e) E = 2n(16-n^4) = 2n(1-n^4 + 15) = 2n(1-n^4) + 30n = E' + 30n 
từ câu d ta đã cứng mình D = n(n^4-1) chia hết cho 30 
=> n(1-n^4) = -n(n^4-1) chia hết cho 30 => E' chia hết cho 30 
=> E = E' + 30n chia hết cho 30 

2) P = n^5/5 + n^3/3 + 7n/15 = 
= (n^5 - n + n)/5 + (n^3 -n +n)/3 + 7n/15 
= (n^5 -n)/5 + (n^3 -n)/3 + n/5 + n/3 + 7n/15 

* từ câu d ta có n^5 - n chia hết cho 30 => n^5 -n chia hết cho 5 
=> (n^5 - n)/5 = a (thuộc Z) 

* n^3 - n = n(n²-1)(n²+1) = (n-1)n(n+1)(n²+1) có tích của 3 số nguyên liên tiếp nên chia hết cho 3 
=> (n^3 - n)/3 = b (thuộc Z) 

* n/5 + n/3 + 7n/15 = 15n/15 = n (thuộc Z) 

Vậy: P = a + b + n thuộc Z 
- - - - -

Nguồn:__|trituyet|__

9 tháng 8 2015

các bạn giúp mình nhanh với :v

 

29 tháng 6 2015

a) \(A\) nhỏ nhất \(\Leftrightarrow\) x + 1 nhỏ nhất và x - 3 lớn nhất Mà x thuộc N ; x - 3 \(\ne\) 0  nên \(\Leftrightarrow\) x =  4. Khi đó \(A=\frac{4+1}{4-3}=5\) có GTNNN

b) \(A=\frac{x+1}{x-3}=\frac{x-3+4}{x-3}=1+\frac{4}{x-3}\) nguyên \(\Leftrightarrow x-3\inƯ\left(4\right)\)

\(\Leftrightarrow x-3\in\left\{-4;-2;-1;1;2;4\right\}\)

\(\Leftrightarrow x\in\left\{-1;1;2;4;5;7\right\}\)