K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2020

thx ban

21 tháng 4 2021

Để \(\frac{2a+2b}{ab+1}\) là bình phương của 1 số nguyên thì 2a + 2b chia hết cho ab + 1; mà ab + 1 chia hết cho 2a + 2b => ab + 1 = 2b + 2a
=> \(\frac{2a+2b}{ab+1}\)=1 = 12

Xét hiệu a2+b2+c2+m2+n2+p2 - (a+b+c+m+n+p)

=a(a-1)+b(b-1)+c(c-1)+m(m-1)+n(n-1)+p(p-1) \(⋮\)2

mà a2+b2+c2+m2+n2+p2\(\ge\)6 ( vì a,b,c,m,np nguyên dương)

=> a+b+c+m+n+p là hợp số

11 tháng 4 2018

Xét hiệu a2+b2+c2+m2+n2+p2  - (a+b+c+m+n+p)

=a(a-1)+b(b-1)+c(c-1)+m(m-1)+n(n-1)+p(p-1) ⋮ 2

mà a2+b2+c2+m2+n2+p2 ≥ 6 ( vì a,b,c,m,np nguyên dương)

=> a+b+c+m+n+p là hợp số 

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:

Áp dụng BĐT Cô-si:

$\frac{a^2}{2}+8b^2\geq 2\sqrt{\frac{a^2}{2}.8b^2}=4ab$

$\frac{a^2}{2}+8c^2\geq 2\sqrt{\frac{a^2}{2}.8c^2}=4ac$

$2(b^2+c^2)\geq 2.2\sqrt{b^2c^2}=4bc$

Cộng các BĐT trên theo vế và thu gọn ta được:

$a^2+10(b^2+c^2)\geq 4(ab+bc+ac)=4$

Ta có đpcm.

14 tháng 6 2015

ta có 

a<b<c=>3a<a+b+c

d<m<n=>3d<d+m+n

=>3a+3d<a+b+c+d+m+n

=>3a+3a/a+b+c+d+m+n<a+b+c+m+n+d/a+b+c+d+m+n

=>3(a+d)/a+b+c+d+m+n)<1

=>a+d/a+b+c+d+m+n<1/3  (đpcm)

copy

a<b<c<d<m<n =>a+b+c+d+m+n>a+b+a+b+a+b=3(a+b)

\(\Rightarrow\frac{a+b}{a+b+c+d+m+n}

14 tháng 6 2015

do a<b<c<d<m<n

=>a+b<c+d

a+b<m+n

=>a+b+a+b+a+b<a+b+c+d+m+n

=>a+b+a+b+a+b/a+b+c+d+m+n<a+b+c+d+m+n/a+b+c+d+m+n

<=>3(a+b)/a+b+c+m+d+n<1

=>a+b/a+b+c+d+m+b<1/3  (đpcm)

14 tháng 6 2015

ta có 

a<b<c=>3a<a+b+c

d<m<n=>3d<d+m+n

=>3a+3d<a+b+c+d+m+n

=>3a+3a/a+b+c+d+m+n<a+b+c+m+n+d/a+b+c+d+m+n

=>3(a+d)/a+b+c+d+m+n)<1

=>a+d/a+b+c+d+m+n<1/3  (đpcm)

9 tháng 10 2021

mau lên mink cần lời giải gấp

2 tháng 8 2019

1

\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{b+a+c}+\frac{c+b}{a+b+c}=2\)

=> M ko là số tự nhiên

2

\(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

Do \(a^2+b^2+c^2\ge0\Rightarrow ab+bc+ca\le0\)

3

\(\left(x+y\right)\cdot35=\left(x-y\right)\cdot2010=xy\cdot12\)

\(\Rightarrow35x+35y=2010x-2010y\)

\(\Rightarrow35-2010x=2010y-35y\)

\(\Rightarrow-175x=-245y\)

\(\Rightarrow\frac{x}{y}=\frac{245}{175}=\frac{7}{5}\)

\(\Rightarrow\frac{x}{7}=\frac{y}{5}\)

Đặt \(\frac{x}{7}=\frac{y}{5}=k\)

\(\Rightarrow x=7k;y=5k\)

\(\Rightarrow\left(5k+7k\right)\cdot35=35k^2\cdot12\)

\(\Rightarrow k=k^2\Rightarrow k=1\left(k\ne0\right)\)

Vậy \(x=7;y=5\)

2 tháng 8 2019

bài 2 chưa thuyết phục lắm, nếu \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\) thì \(ab+bc+ca\ge0\) vẫn đúng, lẽ ra phải là \(ab+bc+ca=-\frac{\left(a^2+b^2+c^2\right)}{2}\le0\) *3*