K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔAHB vuông tại H có \(tanB=\dfrac{AH}{HB}\)

=>\(\dfrac{2.4}{HB}=\dfrac{3}{4}\)

=>\(HB=2.4\cdot\dfrac{4}{3}=3,2\left(cm\right)\)

ΔABH vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(AB^2=3,2^2+2,4^2=16\)

=>\(AB=\sqrt{16}=4\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

=>\(BC=\dfrac{4^2}{3,2}=5\left(cm\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=5^2-4^2=9\)

=>\(AC=\sqrt{9}=3\left(cm\right)\)

Chu vi tam giác ABC là:

3+4+5=12(cm)

15 tháng 7 2021

Ta có : \(\dfrac{HB}{HC}=\dfrac{1}{4}\Rightarrow HB=\dfrac{1}{4}HC\)

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : 

\(AH^2=HB.HC=\left(\dfrac{1}{4}HC\right)HC\Rightarrow256=\dfrac{1}{4}HC^2\)

\(\Leftrightarrow HC^2=1024\Leftrightarrow HC=32\)cm 

\(\Rightarrow HB=\dfrac{1}{4}.32=8\)cm 

=> BC = HB + HC = 32 + 8 = 40 cm 

* Áp dụng hệ thức : \(AB^2=BH.BC=8.40=320\Rightarrow AB=8\sqrt{5}\)cm 

* Áp dụng hệ thức : \(AC^2=CH.BC=32.40=1280\Rightarrow AC=16\sqrt{5}\)cm 

Chu vi tam giác ABC là : 

\(P_{ABC}=AB+AC+BC=24\sqrt{5} +40\)cm 

Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{4}\)

nên \(HB=\dfrac{1}{4}HC\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(HB\cdot HC=AH^2\)

\(\Leftrightarrow HC\cdot\dfrac{1}{4}\cdot HC=14^2=196\)

\(\Leftrightarrow HC^2=196:\dfrac{1}{4}=196\cdot4=784\)

hay HC=28(cm)

\(\Leftrightarrow HB=\dfrac{1}{4}\cdot HC=\dfrac{1}{4}\cdot28=7\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=7\cdot35=245\\AC^2=28\cdot35=980\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}AB=7\sqrt{5}\left(cm\right)\\AC=14\sqrt{5}\left(cm\right)\end{matrix}\right.\)

Chu vi tam giác ABC là:

\(C_{ABC}=AB+AC+BC=7\sqrt{5}+14\sqrt{5}+35=35+21\sqrt{5}\left(cm\right)\)

23 tháng 6 2021

tham khảo của đỗ chí dũng câu hỏi của chi khánh

13 tháng 9 2023

Để tính chu vi của tam giác ABC, ta cần biết độ dài các cạnh của tam giác. Tuy nhiên, từ thông tin đã cho, chúng ta chỉ biết đường cao AH có độ dài là 14cm và tỉ lệ HB/HC là 1/4. Để tính chu vi, chúng ta cần thêm thông tin về độ dài các cạnh khác của tam giác.

ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC

=>HB*HB*4=14^2=196

=>HB=7(cm)

HC=7*4=28cm

BC=7+28=35cm

\(AB=\sqrt{7\cdot35}=7\sqrt{5}\left(cm\right)\)

\(AC=\sqrt{28\cdot35}=14\sqrt{5}\left(cm\right)\)

\(C_{ABC}=7\sqrt{5}+14\sqrt{5}+35=21\sqrt{5}+35\left(cm\right)\)

HB/HC=1/4

nen HC=4HB

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

\(\Leftrightarrow4HB^2=14^2=196\)

=>HB=7(cm)

=>HC=28(cm)

BC=BH+CH=35(cm)

\(AB=\sqrt{7\cdot35}=7\sqrt{5}\left(cm\right)\)

\(AC=\sqrt{28\cdot35}=14\sqrt{5}\left(cm\right)\)

\(C=AB+AC+BC=21\sqrt{5}+35\left(cm\right)\)

15 tháng 10 2017

Vẽ hình nữa nha

5 tháng 8 2018

Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{4}\)

=> \(HC=4HB\)

Đặt HC = x ta có: => HB = 4x

\(AH^2=HB.HC\)

hay \(14^2=4x.x\)

=> 196 = 4x2

=> x = 7

=> HB = 4x = 4.7 = 28

Ta có: BC = HB + HC = 7 + 28 = 35

Xét \(\Delta AHC\) vuông tại H ta có:

\(AH^2+HC^2=AC^2\)

=> AC = \(7\sqrt{5}\) cm

Xét \(\Delta AHB\) vuông tại H ta có:

\(AB^2=AH^2+BH^2=14^2+28^2=980\)

=> AB = \(14\sqrt{5}cm\)

Chu vi tam giác ABC:

AB +AC+BC= \(14\sqrt{5}+7\sqrt{5}+35=35+21\sqrt{5}\)

AH
Akai Haruma
Giáo viên
15 tháng 10 2021

Lời giải:
 Vì $HB:HC=1:4$ nên đặt $HB=a; HC=4a$ với $a>0$

Áp dụng HTL trong tam giác vuông:
$AH^2=BH.CH$

$14^2=a.4a$

$4a^2=196$

$a^2=49\Rightarrow a=7$ (do $a>0$)

Khi đó:

$BH=a=7$ (cm); $CH=4a=28$ (cm)

$BC=BH+CH=7+28=35$ (cm)

$AB=\sqrt{AH^2+BH^2}=\sqrt{14^2+7^2}=7\sqrt{5}$ (cm)

$AC=\sqrt{AH^2+CH^2}=\sqrt{14^2+28^2}=14\sqrt{5}$ (cm)

Chu vi tam giác $ABC$:

$P=AB+BC+AC=7\sqrt{5}+14\sqrt{5}+35=21\sqrt{5}+35$ (cm)

 

AH
Akai Haruma
Giáo viên
15 tháng 10 2021

Hình vẽ: