K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2019

28 tháng 3 2018

Đáp án là C 

Một tam giác được tạo bởi ba điểm phân biệt nên ta xét:

TH1. Chọn 1 điểm thuộc d 1 và 2 điểm thuộc  d 2 : có c 17 1 . c 20 1  tam giác.

TH2. Chọn 2 điểm thuộc  d 1  và 1 điểm thuộc d 2 :  có c 17 2 . c 20 1  tam giác.

Như vậy, ta có C 17 1 . C 20 1 + C 17 2 . C 20 1 = 5950  tam giác cần tìm.

25 tháng 12 2020

Xét 2 trường hợp:

Th1: 1 điểm trên d1, 2 điểm trên d2

Chọn 1 điểm trên d1 có \(C_{17}^1\) (cách)

Chọn 2 điểm trên d2 có \(C^2_{20}\) (cách)

\(\Rightarrow C^1_{17}.C^2_{20}\) (tam giác)

Th2: 1 điểm trên d2, 2 điểm trên d1

Chọn 1 điểm trên d2 \(C^1_{20}\left(cach\right)\)

Chọn 2 điểm trên d1 \(C^2_{17}\left(cach\right)\)

\(\Rightarrow C^1_{20}.C^2_{17}\left(tam-giac\right)\)

\(\Rightarrow C^1_{17}.C^2_{20}+C^2_{17}.C^1_{20}=...\left(tam-giac\right)\)

3 tháng 8 2021

a)Có 7.(11-1)=70 tam giác có đỉnh là các điểm nói trên

b) Có (7-1)(11-1)=60 hình thang có đỉnh là các điểm nói trên

NV
3 tháng 8 2021

a.

Có 2 loại tam giác: tam giác có đỉnh trên d1 (chọn 1 điểm trong 11 điểm của d1) và đáy nằm trên d2 (chọn 2 điểm từ 7 điểm của d2) và tam giác có đáy nằm trên d1, đỉnh nằm trên d2

Số tam giác thỏa mãn: \(C_{11}^1.C_7^2+C_{11}^2.C_7^1=616\)  tam giác

b. Hình thang được tạo ra bằng cách lấy 2 điểm trên d1 kết hợp 2 điểm trên d2

Số hình thang: \(C_{11}^2.C_7^2=1155\)

8 tháng 3 2017

Chọn C

* Số tam giác có 2 đỉnh thuộc d 1  và 1 đỉnh thuộc d 2  là: .

* Số tam giác có 1 đỉnh thuộc  d 1  và 2 đỉnh thuộc  d 2 là: .

Vậy có 70 +  105 = 175 tam giác.

27 tháng 5 2017

6 tháng 5 2018