Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(F\left(x\right)=3x^4+2x^3+6x^2-x+2\)
\(G\left(x\right)=-3x^4-2x^3-5x^2+x-6\)
a: f(x)=3x^4+2x^3+6x^2-x+2
g(x)=-3x^4-2x^3-5x^2+x-6
f(x)+g(x)
=3x^4+2x^3+6x^2-x+2-3x^4-2x^3-5x^2+x-6
=x^2-4
f(x)-g(x)
=3x^4+2x^3+6x^2-x+2+3x^4+2x^3+5x^2-x+6
=6x^4+4x^3+11x^2-2x+8
\(a) f ( x ) = 2 x ^4 + 3 x ^2 − x + 1 − x ^2 − x ^4 − 6 x ^3\)
\(= ( 2 x ^4 − x ^4 ) − 6 x ^3 + ( 3 x ^2 − x ^2 ) − x + 1\)
\(= x ^4 − 6 x ^3 + 2 x ^2 − x + 1\)
\(g ( x ) = 10 x ^3 + 3 − x ^4 − 4 x ^3 + 4 x − 2 x ^2\)
\(= − x ^4 + ( 10 x ^3 − 4 x ^3 ) − 2 x ^2 + 4 x + 3\)
\(= − x ^4 + 6 x ^3 − 2 x ^2 + 4 x + 3\)
\(b) f ( x ) + g ( x ) = x ^4 − 6 x ^3 + 2 x ^2 − x + 1 − x ^4 + 6 x ^3 − 2 x ^2 + 4 x + 3\)
\(= ( x ^4 − x ^4 ) + ( − 6 x ^3 + 6 x ^3 ) + ( 2 x ^2 − 2 x ^2 ) + ( − x + 4 x ) + ( 1 + 3 )\)
\(= 3 x + 4\)
c)Có \(h ( x ) = f ( x ) + g ( x ) = 3 x + 4\)
\(Cho h ( x ) = 0 ⇒ 3 x + 4 = 0\)
\(⇒ 3 x = − 4\)
\(⇒ x = − \frac{4 }{3} \)
Vậy \(x=-\frac{4}{3}\) là nghiệm của \(h ( x ) \)
F(x) = 2x5 + 3x3 - 4x4 + 5x - x2 + x3 + x1
F(x) = 2x5 -4x4 + ( 3x3 + x3 ) -x2 + ( 5x+x)
F(x) = 2x5 - 4x4 + 4x3 - x2 + 6x
G(x) = -x2 - x5 + 2x4 - 3x3 + x4 +7
G(x) = -x5 + ( 2x4 + x4) -x2 +7
G ( x) = -x5 + 3x4 -x2 +7
a,F(x)= 2x\(^5\) + 3x\(^3\) - 4x\(^4\) + 5x - x\(^2\) + x\(^3\) + x\(^1\)
=2x\(^5\)- 4x\(^4\) \(+4x^3\)\(-x^2+6x\)
G(x)= -x\(^2\) - x\(^5\) + 2x\(^4\) - 3x\(^3\) + x\(^4\) + 7
=\(-x^5\)\(+3x^4\)\(-3x^3\)\(-x^2\)+7
b,F(x)-G(x)=(2x\(^5\)- 4x\(^4\) \(+4x^3\)\(-x^2+6x\))-\((-x^5+3x^4-3x^3-x^2+7)\)
=\(2x^5-4x^4+4x^3-x^2+6x\) \(+x^5-3x^4\)\(+3x^3\)\(+x^2-7\)
=\(\left(2x^5+x^5\right)\)+\(\left(-4x^4-3x^4\right)\)+\(\left(4x^3+3x^3\right)\)\(\left(-x^2+x^2\right)\)+6x-7
=\(3x^5-7x^4\)\(+7x^3+6x-7\)
a. Ta có:
f(x) = -2x2 - 3x3 - 5x + 5x3 - x + x2 + 4x + 3 + 4x2
= 2x3 + 3x2 - 2x + 3 (0.5 điểm)
g(x) = 2x2 - x3 + 3x + 3x3 + x2 - x - 9x + 2
= 2x3 + 3x2 - 7x + 2 (0.5 điểm)
a: \(F\left(x\right)=x^5-3x^2+x^3-x^2-2x+5\)
\(=x^5+x^3-4x^2-2x+5\)
\(G\left(x\right)=x^5-x^4+x^2-3x+x^2+1\)
\(=x^5-x^4+2x^2-3x+1\)
b: Ta có: \(H\left(x\right)=F\left(x\right)+G\left(x\right)\)
\(=x^5+x^3-4x^2-2x+5+x^5-x^4+2x^2-3x+1\)
\(=2x^5-x^4+x^3-2x^2-5x+6\)
`a,`
`F(x)=4x^4-2+2x^3+2x^4-5x+4x^3-9`
`F(x)=(2x^4+4x^4)+(2x^3+4x^3)-5x+(-2-9)`
`F(x)=6x^4+6x^3-5x-11`
`b,`
`K(x)=F(x)+G(x)`
`K(x)=(6x^4+6x^3-5x-11)+(6x^4+6x^3-x^2-5x-27)`
`K(x)=6x^4+6x^3-5x-11+6x^4+6x^3-x^2-5x-27`
`K(x)=(6x^4+6x^4)+(6x^3+6x^3)-x^2+(-5x-5x)+(-11-27)`
`K(x)=12x^4+12x^3-x^2-10x-38`
`c,`
`H(x)=F(x)-G(x)`
`H(x)=(6x^4+6x^3-5x-11)-(6x^4+6x^3-x^2-5x-27)`
`H(x)=6x^4+6x^3-5x-11-6x^4-6x^3+x^2+5x+27`
`H(x)=(6x^4-6x^4)+(6x^3-6x^3)+x^2+(-5x+5x)+(-11+27)`
`H(x)=x^2+16`
Đặt `x^2+16=0`
Ta có: \(x^2\ge0\text{ }\forall\text{ }x\)
`->`\(x^2+16\ge16>0\text{ }\forall\text{ }x\)
`->` Đa thức `H(x)` vô nghiệm.
a, Thu gọn và sắp xếp theo lũy thừa giảm dần của biến :
* \(F_{\left(x\right)}=5x^2-1+3x+x^2-5x^3\)
\(=-5x^3+6x^2+3x-1\)
* \(G_{\left(x\right)}=2-3x^3+6x^2+5x-2x^3-x\)
\(=-5x^3+6x^2+4x+2\)
b, Ta có :
* \(M_{\left(x\right)}=F_{\left(x\right)}-G_{\left(x\right)}\)
\(\Rightarrow M_{\left(x\right)}=\left(-5x^3+6x^2+3x-1\right)-\left(-5x^3+6x^2+4x+2\right)\)
\(=-5x^3+6x^2+3x-1+5x^3-6x^2-4x-2\)
\(=-x-3\).
* \(N_{\left(x\right)}=F_{\left(x\right)}+G_{\left(x\right)}\)
\(\Rightarrow N_{\left(x\right)}=\left(-5x^3+6x^2+3x-1\right)+\left(-5x^3+6x^2+4x+2\right)\)
\(=-5x^3+6x^2+3x-1-5x^3+6x^2+4x+2\)
\(=-10x^3+12x^2+7x+1\).
c, Để tìm nghiệm của đa thức \(M_{\left(x\right)}\) ta đặt \(M_{\left(x\right)}=0\) vào \(M_{\left(x\right)}=-x-3\) thì ta được :
\(-x-3=0\)
\(\Leftrightarrow-x=3\)
\(\Leftrightarrow x=-3\)
Vậy nghiệm của đa thức \(M_{\left(x\right)}\) là \(x=-3\).
b)M(x)=F(x)-G(x)
F(x)-G(x)=(-5x3 -6x2 + 3x - 1) - (-5x3 + 6x2 + 4x + 2)
=-5x3 - 6x2 + 3x - 1 - 5x3 - 6x2 - 4x - 2
=(-5x3 - 5x3) + (-6x2 - 6x2) + (3x - 4x) + (-1 - 2)
=-10x3 - 12x2 - 1x - 3
Vậy M(x)=-10x3 - 12x2 - 1x - 3
N(x)=F(x)+G(x)=(-5x3 - 6x2 + 3x - 1) + (-5x3 + 6x2 + 4x + 2)
=-5x3 - 6x2 + 3x - 1 + (-5x3) + 6x2 + 4x + 2
=-5x3 + (-5x3) + (-6x2 + 6x2) + (3x + 4x) + (-1 + 2)
=-10x3 + x2 + 7x + 1
-Chúc bạn học tốt nhaaa
a: f(x)=3x^4+2x^3+6x^2-x+2
g(x)=-3x^4-2x^3-5x^2+x-6
b: H(x)=f(x)+g(x)
=3x^4+2x^3+6x^2-x+2-3x^4-2x^3-5x^2+x-6
=x^2-4
f(x)-g(x)
=3x^4+2x^3+6x^2-x+2+3x^4+2x^3+5x^2-x+6
=6x^4+4x^3+11x^2-2x+8
c: H(x)=0
=>x^2-4=0
=>x=2 hoặc x=-2