K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2020

Đặt \(N=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

\(\Rightarrow N\sqrt{2}=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}\)

\(=\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}\)

\(=\sqrt{7}+1-\sqrt{7}+1=2\)

\(\Rightarrow N=\sqrt{2}\)

\(\Rightarrow M=N-\sqrt{8}=\sqrt{2}-\sqrt{8}\)

25 tháng 7 2021

a,Ta có :  \(1-\sqrt{3}\)\(\sqrt{2}-\sqrt{6}=\sqrt{2}\left(1-\sqrt{3}\right)\Rightarrow1-\sqrt{3}< \sqrt{2}\left(1-\sqrt{3}\right)\)

Vậy \(1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)

b, Đặt A =  \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)(*)

\(\sqrt{2}A=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2\)

\(=\sqrt{7}+1-\sqrt{7}+1-2=0\Rightarrow A=0\)

Vậy (*) = 0 

1: 

Ta có: \(\sqrt{2}-\sqrt{6}\)

\(=\sqrt{2}\left(1-\sqrt{3}\right)< 0\)

\(\Leftrightarrow1-\sqrt{3}< \sqrt{2}-\sqrt{6}\)

3 tháng 7 2017

\(=2,35693368\)

3 tháng 7 2017

cách làm kìa ai chẳng biết kết quả

7 tháng 7 2015

\(M=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

\(M^2=\left(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\right)^2\)

\(M^2=\left(\sqrt{4+\sqrt{7}}\right)^2-2.\sqrt{4+\sqrt{7}}.\sqrt{4-\sqrt{7}}+\left(\sqrt{4-\sqrt{7}}\right)^2\)

\(M^2=4+\sqrt{7}-2\sqrt{\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}+4-\sqrt{7}\)

\(M^2=8-2\sqrt{16-7}\)

\(M^2=8-2\sqrt{9}=8-2.3=8-6=2\)

\(M=\frac{+}{ }\sqrt{2}\)

23 tháng 8 2023

a) \(15\sqrt{\dfrac{4}{3}}-5\sqrt{48}+2\sqrt{12}-6\sqrt{\dfrac{1}{3}}\)

\(=\sqrt{15^2\cdot\dfrac{4}{3}}-5\cdot4\sqrt{3}+2\cdot2\sqrt{3}-\sqrt{6^2\cdot\dfrac{1}{3}}\)

\(=\sqrt{\dfrac{225\cdot4}{3}}-20\sqrt{3}+4\sqrt{3}-\sqrt{\dfrac{36}{3}}\)

\(=\sqrt{75\cdot4}-16\sqrt{3}-\sqrt{12}\)

\(=10\sqrt{3}-16\sqrt{3}-2\sqrt{3}\)

\(=-8\sqrt{3}\)

b) \(\dfrac{15}{\sqrt{6}+1}-\dfrac{3}{\sqrt{7}-\sqrt{2}}-15\sqrt{6}+3\sqrt{7}\)

\(=\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}-\dfrac{3\left(\sqrt{7}+\sqrt{2}\right)}{\left(\sqrt{7}-\sqrt{2}\right)\left(\sqrt{7}+\sqrt{2}\right)}-15\sqrt{6}+3\sqrt{7}\)

\(=\dfrac{15\left(\sqrt{6}-1\right)}{6-1}-\dfrac{3\sqrt{7}+3\sqrt{2}}{7-2}-15\sqrt{6}+3\sqrt{7}\)

\(=3\left(\sqrt{6}-1\right)-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}-15\sqrt{6}+3\sqrt{7}\)

\(=3\sqrt{6}-3-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}-15\sqrt{6}+3\sqrt{7}\)

\(=-12\sqrt{6}-3+3\sqrt{7}-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}\)

\(=\dfrac{-60\sqrt{6}-15+15\sqrt{7}-3\sqrt{7}-3\sqrt{2}}{5}\)

\(=\dfrac{-60\sqrt{6}-15+12\sqrt{7}-3\sqrt{2}}{5}\)